ELECTRICITY GENERATION POTENTIAL FROM MUNICIPAL SOLID WASTE IN UYO METROPOLIS, NIGERIA

BY

DOMINIC DAVID EKPO B.ENG. (Uyo), M.Sc. (Ibadan), MECHANICAL ENGINEERING MATRIC. NO.: 142347

A thesis in the Department of MECHANICAL ENGINEERING

Submitted to the Faculty of Technology in partial fulfillment of the requirements for the award of the Degree of

Doctor of Philosophy

of the UNIVERSITY OF IBADAN, IBADAN

Department of Mechanical Engineering University of Ibadan Ibadan

MARCH, 2019

ABSTRACT

Disposal of Municipal Solid Waste (MSW) has been identified as a major environmental challenge in developing countries. Electricity generation has been identified as one of the ways for utilisation of MSW. Literature is scanty on the characterisation of MSW for optimal electricity generation in Nigeria. This study was designed to investigate the potential of electricity generation from MSW in Uyo metropolis, Nigeria.

Municipal solid waste of 100 kg were collected from ten selected sites in Uyo metropolis and segregated into eight components. Data for the estimation of total volume of MSW were collected through field studies and AkwaIbom State Waste Management and Environmental Protection Agency, and spot sampling method was used to sort the MSW. Calorific Values (CV) of the segregated MSW components: Organic Waste (OW); Paper-Carton Waste (PCW); Plastics Waste (PW); Textile, Leather and Wood Waste (TLWW); Glass Waste (GW); Iron and Metal Packaging Waste (IMPW); Inert Metal Waste (IMW); and Unknown Waste (UW), were determined using bomb calorimeter at 10% moisture content. A prototype power plant of 1 kW capacity was designed and constructed according to standard procedures to model electricity generation from MSW using two sets of 42 combinations of two and three ratios of segregated components based on literature. The first combination consisted of six different mix of PW/TLWW, PW/OW, PW/PCW, TLWW/OW, TLWW/PCW, and O/PW, across five different ratios (9:1, 8:2, 7:3, 6:4 and 5:5); while the second consisted of four different mix of PW/TLWW/OW, PW/TLWW/PCW, PW/OW/PCW, and TLWW/OW/PCW across three different ratios (5:4:1, 5:3:2 and 4:3:3). Linear programming model was used to obtain the CV of the mix and Dulong equations were used to determine the electricity potential of MSW. Data were analysed using ANOVA at $\alpha_{0.05}$.

The estimated annual volume of MSW was 72,000 tonnes for a population of about 847500. The components were dissagregated into 66.3% OW, 18.4% PCW, 5.2% PW, 4.3% TLWW, 1.3% GW, 2.1% IMPW, 0.5% IMW, and 1.9% UW. The CV of the components obtained for OW, PCW, PW, TLWW, GW, IMPW, IMW, and UW were 18.0, 17.0, 40.0, 32.0, 0.0, 0.0, 0.0, and 18.0MJ, respectively. The CV of PW/TLWW, PW/OW, PW/PCW, TLWW/OW, TLWW/PCW, and OW/PCW at 9:1 mix were 39.20±0.70, 37.80±0.63, 37.70±0.43,

 30.60 ± 0.71 , 30.50 ± 0.57 , and 17.90 ± 0.68 MJ, while at 6:4 mix, the CV were 36.80 ± 0.81 , 31.20 ± 0.56 , 30.80 ± 0.21 , 26.40 ± 0.45 , 26.00 ± 0.44 , and 17.60 ± 0.42 MJ, respectively. The CV of PW/TLWW/OW, PW/TLWW/PCW, PW/OW/PCW, and TLWW/OW/PCW at 5:4:1 mix were 34.60 ± 0.54 , 34.50 ± 0.53 , 28.90 ± 0.35 , and 24.90 ± 0.32 MJ, while at 4:3:3 mix, the CV were 31.00 ± 0.69 , 26.50 ± 0.55 , 26.50 ± 0.45 , and 23.30 ± 0.46 MJ, respectively. The estimated power potential ranged from 5.0 to 8.0 MW. The highest potential was obtained for PW/TLWW (9:1), while the lowest potential was obtained for OW/PCW (5:5) operating at 160.93 tonnes/day. There was no significant difference between the estimated power potential and the published data for same mix ratios.

The use of municipal solid waste for electricity generation is feasible in Uyo metropolis. Improved waste mix of plastics, textiles, wood and leather gave the highest electricity generation potential.

Keywords: Waste characterisation, Municipal solid waste, Energy potential **Word count:** 496

ACKNOWLEDGEMENTS

Many thanks to God for His grace throughout the challenging duration of this programme. I most grateful to my project Supervisor, Dr.Chukwuemeka Jude Diji for his wonderful understanding and contributions in completing this study. My utmost appreciation also goes to the Head of Department, and all staff, teaching and non-teaching of the Mechanical Engineering for their support and understanding throughout this programme.

Special thanks goes to the postgraduate coordinator of the Department of Mechanical Engineering, Dr. Abu, Sub-Dean Postgraduate of the Faculty of Technology, Dr. A.A. Olapade, Dr. Dare, Dr.Ajude, etc. My thanks equally goes to my special colleagues, Engr. Comfort Adadu, Dr. Isaac William, Engr. Ogunleye, Engr. Bassey, Mr. Dennis Edem, Basil Ebiang, etc.

My wife Mrs. Edoama Dominic Ekpo had been in total support of this programme in all ramifications. God in heaven will continue to reward her and favour her like Esther in the Bible. To my immediate elder brother, Mr. Solomon Ekpo, the initiator and major sponsor of this programme, who encouraged me financially and morally but could not complete it due to the cold hand of death. May his soul rest in peace.

I am indebted to my beloved mother, Mrs. Sabbath David Ekpo for her moral and financial support. Also, I express my gratitude to my elder brothers and sisters who in their prayers, made it possible for this work to be completed. Mr. Isang David Ekpo, Mrs. Grace Francis, Mrs. Iniobong John Cyril, Mr. Samuel Ekpo, etc. My good friends like Mr. EmanaEdem, Dr. Henry Johnson, BasseyNkanang, etc. are equally appreciated.

In all, I thank you all in your encouragement and advice. May God bless you abundantly in Jesus Name. Amen.

CERTIFICATION

I certify that this work was carried out by D. D. Ekpoin the Department of Mechanical Engineering, University of Ibadan, Ibadan.

.....

Supervisor

C. J. Diji

B.Sc. (OAU), M.Sc, Ph.D (Ibadan) Senior Lecturer, Department of Mechanical Engineering University of Ibadan,Ibadan

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract	ii
Acknowledgements	iv
Certification	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
List of Plates	xii
Nomenclature	xiii

CHAPTER ONE: Introduction

1.1	The History of Power Generation in Nigeria	1
1.2	Waste	2
1.2.1	Types of Waste	3
1.2.2	Municipal Solid Waste (MSW)	3
1.3	Management of Municipal Solid Waste	4
1.4	Energy from Waste	5
1.5	Waste to Energy Plant	6
1.6	Problem Statement	6
1.7	Objectives of the study	7
1.8	Project Goal	7
1.9	Specific area of Research	7
1.10	Brief Description of the city of Uyo	7

CHAPTER TWO: Review of Related Literature

2.1	Waste Management	9
2.2	Problems of Inadequate Waste Management	9
2.3	Challenges of Urban Waste Management	11
2.3.1	Challenges of Municipal Solid Waste Management	
	inUyo Metropolis	11
2.4	Municipal Solid Waste Power Plants	12

2.4.1	Mass Bum (Incinerator)	12
2.4.2	Anaerobic Digestion Power Plant	17
2.4.3	Gasification	22
2.4.4	Pyrolysis	25
2.5	Integer Linear Programming (ILP)	38

CHAPTER THREE: Materials and Methodology

	3.1	Waste Collection		39
	3.2	Municipal Solid Waste Sampling		39
	3.3	The segregation Process and Ratio Preparation		39
	3.4	Interpretation of Representation		40
	3.5	Linear Programming Model		40
3.6	6 Test fo	or Calorific Value	43	
	3.7	Experimental Set-up		44
	3.8	Related Dulong's Equations to Electrical Power Potential		50
	3.9	The Production Assessment		51
	3.10	Statistical Analysis for the Experimental Results		52
	3.11	Economies		53
	3.12	Materials and Construction Analysis for the Testing Plant		53
	3.13	Design of Municipal Solid Waste Power Plant		60
	3.14	Emission		61

CHAPTER FOUR: Results and Discussion

4.1 Statistical Analysis of Experimental Results	68
4.2 Standard Deviation Using ANOVA at $\alpha 0.05$	108
4.3 Deductions	126
4.4 Calculation of Electricity Potential of MSW in Uyo Metropolis	136
4.5 Economics	149
4.6 Emission Analysis	162

CHAPTER FIVE: Conclusion

References	172
Appendices	177

LIST OF TABLES

	PAGE
Fable 2.1: Power Generation Statistics 2010-2014	29
Table 3.1: Materials Required for the Fabrication Process	60
Cable 4.1: Volume of Municipal Solid Waste (MSW) Generated	
romUyo Metropolis 62	
Cable 4.2: Volume of Municipal Solid Waste Disposed in Uyo Metropolis	62
Cable 4.3: Showing Percentage Composition and Calorific Value (CV)	
of each Component in a Location	64
Cable 4.4: Average Percentage of Waste Per Kilogram	66
Table 4.5: Calorific Value of Different MSW	67
Table 4.6: Showing Experimental Results for OW/PCW@9:1	68
Cable 4.7: Showing Experimental Results for TLWW/PCW@9:1	70
Cable 4.8: Showing Experimental Results for OW/PCW@6:4mix	72
Cable 4.9: Showing Experimental Results for TLWW/PCW@6:4mix	74
Table 4.10: Showing Experimental Results for PW/OW@6:4mix	76
Table 4.11: Showing Experimental Results for TLWW/OW @9:1mix	78
Table 4.12: Showing Experimental Results for PW/TLWW @6:4mix	80
Table 4.13: Showing Experimental Results for TLWW/OW @ 6:4mix	82
Table 4.14: Showing Experimental Results for PW/PCW @ 6:4mix	84
Table 4.15: Showing Experimental Results for PW/PCW @ 9:1mix	86
Table 4.16: Showing Experimental Results for PW/TLWW @9:1mix	88
Table 4.17: Showing Experimental Results for PW/OW @9:1mix	90
Table 4.18: Showing Experimental Results for PW/TLWW/PCW @5:4:1mi	x 92
Table 4.19: Showing Experimental Results for PW/TLWW/OW @5:4:1mix	94
Fable 4.20: Showing Experimental Results for PW/OW/PCW @5:4:1mix	96
Table 4.21: Showing Experimental Results for TLWW/OW/PCW @5:4:1m	ix 98
Table 4.22: Showing Experimental Results for PW/TLWW/OW @4:3:3mix	100
Table 4.23: Showing Experimental Results for PW/OW/PCW @4:3:3mix	102
Table 4.24: Showing Experimental Results for TLWW/OW/PCW @4:3:3m	ix 104
Table 4.25: Showing Experimental Results for PW/TLWW/PCW @4:3:3mi	x 106
Cable 4.26: Experimental Results for the Prepared ratios for two Combination	ons 119

Table 4.27: Experimental Results for the Prepared ratios for three Combinations	120
Table 4.28: Data Generated from the Incineration Process	135
Table 4.29: Sum Product of the Calorific Values	137
Table 4.30: Average Calorific Value of Total Waste	140
Table 4.31: Specific Energy Output per ton of Waste	140
Table 4.32: Table Showing the Load Factor and Average kg/kg of MSW	141
Table 4.33: Load Factor and Quantity of MSW in Combustor per day	142
Table 4.34: Load Factor and Heat Rate	143
Table 4.35: Load Factor and Kwh Annual Production	144
Table 4.36: Thermodynamic Properties of the Plant	147
Table 4.37: Capital Cost of 8MW MSW Combustion Plant	150
Table 4.38: Labour Wages Per Shift for one year	151
Table 4.39: Labour Wages for three shift per year	152
Table 4.40: Annual Operating Cost of 8MW MSW Combustion Plant	153
Table 4.41: Cash Flow Analysis	156
Table 4.42: Cash Flow Analysis	157
Table 4.43: Showing Cash Flow	160
Table 4.44: Carbon Content of Different Waste	164
Table 4.45: Summary of Emission Characteristics of Hazardous Waste	165
Table 4.46: Emission Factors Involving High Weight Elements	166

LIST OF FIGURES

PAGEFigure 3.1Thermodynamic Process Cycle45

LIST OF PLATES

		PAGE
Plate 1.1	Map of Akwalbom State Showing the City of Uyo	8
Plate 2.1	Flow Chart of Energy from Waste for Anaerobic Digestion	22
Plate 3.1	The Bomb Calorimeter Showing Parts	45
Plate 3.2	Pictorial view of the Bomb Calorimeter	46
Plate 3.3	Incineration/Steam Turbine System	47
Plate 4.1	The Municipal Solid Waste Power Plant	127
Plate 4.2	Refuse Selected for the Incineration Process	128
Plate 4.3	Refuse Separation Process	129
Plate 4.4	Paper-carton Waste Selected for Incineration	130
Plate 4.5	Textiles, Leather, Wood and Plastics Waste Selected	
	for Incineration	131
Plate 4.6	Some Organic Refuse Selected for Incineration	132
Plate 4.7	Showing Some Stages of Incineration	133
Plate 4.8	Setting Fire on the Waste in the Incinerator	134

NOMENCLATURE

Municipal solid waste- MSW Calorific value- CV Integer linear programming- ILP Municipal Solid waste mix- MSWM Plastic waste/textile, leather, wood waste-PW/TLWW Plastic waste/organic waste-PW/OW Plastic waste/paper-carton waste-PW/PCW Textile, leather, wood, waste/organic-TLWW/OW Textile, leather, wood/paper-carton-TLWW/PCW Organic waste/paper-carton-OW/PCW Plastics/Textiles, leather, wood waste/Organic waste- P/TWL/O Plastics, Textiles, leather, wood/Paper-carton- PW/TLWW/PCW Plastics/Organic/Paper-carton- PW/OW/PCW Textiles, leather, wood waste/Organic waste/Paper-carton waste- TLWW/OW/PCW Organic waste-O Textiles, Wood, Leather-TWL Paper- Carton-PC Plastics-P Metals- M Glass-G Inert Matter-IM Others-OT

Mega joules- MJ

CHAPTER ONE

INTRODUCTION

1.1 THE HISTORY OF POWER GENERATION IN NIGERIA

The electricity generation and distribution started in 1895. In 1929, the Company was later founded as NESCO. That is Nigeria Electricity Supply Company. It operated as a utility company in Jos. In 1951, the Electricity Corporation of Nigeria (ECN) was founded. This was followed by setting up of the first 132KV line. This was built in 1962 to link Ijora to Ibadan power station (Nigerian Electricity Regulatory Commission 2007)

According to Nigerian Electricity Regulatory Commission, 2007, "Since then, there have been an increasing electricity infrastructure and changes both in the nomenclature and operations of the regulatory agencies like, the establishment of The Niger Dams Authority (NDA) established in 1962 with a mandate to develop the hydro-power subsector and the subsequent merging of Niger Dams Authority with Electricity Corporation of Nigeria in 1972. The National Electric Power Authority (NEPA), the current National Electricity Regulatory Commission (NERC) and Power Holding Company of Nigeria (PHCN) followed afterwards as the search for stable and affordable power supply in the country continues. At the moment, Nigeria generates about 5000 MW of electricity for its population of more than 160 million people. This is saddening and embarrassing when compared to a country like South Africa that generates over 40,000 MW for its population of 52 million.

Of recent, Government has initiated efforts and reforms to improve electricity supply. Of recent, are the "Electric Power Sector Reforms Act of 2005' and the subsequent 'Power Sector Reform Roadmap' initiated in 2010 by the Jonathan's administration. The Power Sector Reform Roadmap was meant to unbundle the electricity sector chain and promoting a private sector-led electricity sector also encompasses issues of electricity pricing and regulatory frameworks. Its aims to generate 40,000 MW of electricity by 2020 while expanding generation and transmission capacity and also improving the market structure" (Presidential Task Force on Power, 2015). This process did not take into consideration what generation technology and capacity is to be added. It recommendations were mainly on expanding generation capacity through hydro and gas power plant and it did not consider a holistic energy mix for power generation expansion. This is as proven as most ongoing and some newly completed power generation expansion project developed under the National Integrated Power Project (NIPP) are mainly gas and hydro power plant. Independent Power Producers (IPP) has also followed suit, there by leaving other power sources such as wind, nuclear, coal and the use of municipal solid waste untapped. It is of recent, that Nigeria Atomic Energy Commission (NAEC) has entered talks with Rosatom Corporation. This is a Russian Company to construct a 4800MW nuclear power plant under the build, own, operate and transfer Board of Trustees (BOT) agreement at a cost of US\$ 20billion (Presidential Taskforce on Power 2015). It is expected that preliminary licensing of the approved sites by the Nigerian Nuclear Regulatory Authority (NNRA) is expected by the end of year 2016 (Presidential Taskforce on Power 2015).

1.2 WASTE

According to World Health Organisation, "Waste is defined as any material lacking direct value to the producer and so must be disposed of. It also refers to waste as "something, which the owner no longer wants at a given time and space and which has no current or perceived market value". "This idea and perception of represented a broad-based approach toward the classification of what really constitutes waste" Barraclough, 1993. Barraclough also classified wastes "as gaseous, liquid, or solid. Gaseous and liquid wastes are known to be free flowing and can easily migrate from one place to another, whereas solid wastes are not free flowing, their flow is only influenced by human activities. Handling and containment of gaseous, liquid and to greater extent solid wastes has been known to be one of man's intractable problems. Indiscriminate disposal and dumping of refuse has become a common practice and almost a normal tradition in Nigerian cities. Most of the waste dumps are located very close to where human beings are residing, roadsides, markets, farms, creeks, etc. The composition of waste dumps varies widely, with the type of human activities taking place around the dumpsites. Close examples of these activities include domestic, commercial and industrial wastes. The presence of municipal solid wastes reduces the

aesthetic value of the environment and also make way for various diseases and toxic conditions inherent in and derivable from wastes products".

1.2.1 TYPES OF WASTES

Kumar, et al, 2016, described waste materials as "waste stream which includes the entire variety of refuse generated during industrial, domestic, commercial and construction processes. Depending on the base in which the waste was derived, the refuse varies from country to country. In most of the developed countries especially, the western communities, the major components derived from industrial waste are steel slag, blast furnace and electrical power station ash".

"Industrial wastes are waste generated from industrial activities like, chemicals, paints, pesticides, oil sludge, grease, inorganic materials, etc. Domestic wastes are the type of waste generated from household activities and commercial establishments. These waste appear in different forms, ranging from water-borne waste emanating from households, including sludge water and sewage, rubbish items, animals and human remains as well as laboratory and wastes" (Kumar, et al, 2016).

The major focus of this work is on MSW.

1.2.2 MUNICIPAL SOLID WASTE (MSW)

This can be described as unwanted products that are generated by people in the environment (Alfred, 2015). It is the refuse generated from urban centres, markets and houses, etc. (Alfred 2015). Waste stream, that range from paper, carton, plastics and organic waste of different types constitute the major components of MSW (Renewable Waste Intelligence, 2013). The constituent of MSW varies meaningfully from one country to the other. It mostly changes with time (Sule, 2004). In the western countries and America, that have a better recycling technology, the waste component constitute mostly of intractable MSW such as un-recyclable packages (Sule, 2004). In advanced communities, in the absence of better recycling, it involves mostly refuse from food and other types of refuse (Ekugo, 1998).

Municipal Solid Waste is classified in several ways which include the following:

- Wastes that are biodegradable: These type of wastes includes kitchen waste, paper, food waste and green waste (Kumar, et al 2016).
- Refuse that can be recycled: These type of refuse includes irons, books, containers, wears, certain rubbers and etc. (Kumar, et al 2016).

- Inert Waste materials: These type of wastes includes demolition waste and construction waste, dirt, debris and rocks (Kumar, et al 2016)
- Electronic refuse materials. These type of refuse materials includes electrical and electronic refuse materials, etc. (Kumar, et al 2016)
- Composite wastes materials: These type of waste materials includes waste clothing, waste plastics, Tetra Packs (Kumar, et al 2016).
- Hazardous refuse materials. These type of refuse materials include paints, chemicals and agricultural additives (Kumar, et al 2016).
- Wastes that are toxic: These type of waste materials includes herbicides, pesticide and fungicides (Kumar, et al 2016).
- Medical waste materials: These include waste derived from hospitals like the expired drugs and etc. (Kumar, et al 2016).

1.3 MANAGEMENT OF MUNICIPAL SOLID WASTE

The main steps applicable in the management of MSW are the generation, sorting, separation, transfer and discharging processes. The process going this way, after the disposal of the MSW, it can now be used in any of these four ways, which include recycling, landfilling, composting and waste-to-energy through incineration (Agunwamba, 1998).

The functional element of collection of MSW includes but not limited to the collection of MSW and recyclable particles, but also involve the transportation of these particles to the point where the vehicles carrying the collected MSW are discharged. This point could be a waste processing plant. It could also be a transfer station. At the same time, could be a landfill discharging point (Agunwamba, 1998).

According to Ekugo, 1998, "Waste handling and separation are important activities related to municipal solid waste management till the municipal solid waste are placed in storage containers for collection. Handling of the waste also involved the movement of these loaded containers to the point of collection of the municipal solid waste. Most tedious process of MSW involves separation of MSW from dumpsite. Presently, curbside collection, drop off and buy back centres are the means and facilities for the recovery of municipal solid waste materials that have been separated from the source. The separation and processing of municipal solid waste which have already been separated at the source and the separation of other commingled wastes mostly take

place at the materials recovery facility, transfer stations, combustion facilities and also disposal sites".

Alfred, 2015, also explained that "the transferring and transportation of municipal solid waste involves two major processes; firstly, the waste is being transferred from a much smaller collection vehicle to much larger transportation equipment. The municipal solid waste dumped is now transported, which normally take long distances, to a processing or disposal site"

The modern landfill for disposal of MSW is not a dumpsite. Nowadays, they are engineering system used for disposal of MSW on land which does not develop or create nuisance or contamination to the environment. Environmental health and safety are taken into consideration (Sule, 2004).

MSW can be used extensively for electricity generation (Ekugo, 1998). Several technologies of MSW have been designed. This help in the processing of MSW for power production. The system is better compared to the ones that were in existence. The technology incorporate the following:

- Landfill gas capturing.
- Combustion.
- Pyrolysis.
- Gasification.
- Plasma arc gasification (Ekugo, 1998)

In this study, MSW is considered a major source of material for generating electricity in Uyo metropolis, a major state capital in the south – south part of Nigeria.

1.4 ENERGY FROM WASTE

Waste energy in its practical deployment, features the development of municipal solid waste combustion plant, is in various stages of progress for most of these countries (Hollenbaccher, et. al, 1973). At the moment, Austria is the leading country in the generation of energy from municipal solid waste field in Europe, presently having several units in operation, which utilise the local municipal solid waste effectively. The rest of the larger cities follow in a steady pace (Munster, 2009).

1.5 WASTE TO ENERGY PLANTS

There are two identical configurations of municipal solid waste to energy plants, which are designated differently according to their characteristics and method of operations. They are RDF and combustion system (Rotter, 2011). The major difference in these operations is one characteristic element, which takes place before municipal solid waste is being combusted (Hulgaard and Vehlowy, 2011). In the case of a refuse derived fuel, plant separation of non-combustible particles is undertaken by shredding the municipal solid waste (Rotter, 2011. One of the most appreciable aspects of refuse derived fuel is that it can be employed as a supplementary fuel in conventional boilers, the other aspect involved burning unprocessed MSW directly in the incinerator. This burning procedure happened in a control input of air (Bain, et. al, 1996).

1.6 PROBLEM STATEMENT

Low energy output has cause many challenges in Akwalbom State to a great extent, even with the support of (IPP) in IkotAbasi. Presently, the state government is trying to change the orientation of the people from civil mentality to an industrialized one as this requires a better power supply to accommodate the investors. Presently, the quantity of MSW in the state is on a high increase and there is need to convert waste to energy.

This study of MSW for electricity production in Uyo metropolis involves the process of sorting and combination of waste in two or three optimum mix in order to get the best optimum mix of MSW for electricity. The type of MSW that have been identified in Uyo metropolis include; Organic, paper-carton, Textiles, wood, leather, Plastics, metals, glass, inert matter and others.

In summary, the study intends to address the following problems;

- There is need to improve energy supply in AkwaIbom State.
- This energy is needed to accommodate the investors to industrialized the state for commercial activities
- Presently, the quantity of MSW in the state is of large quantity and can be converted to electricity.
- This study is based on the utilization of municipal solid waste for power generation in Uyo.
- The study models various combinations of municipal solid waste that will give a better optimum energy.

 The model of the municipal solid waste plant proposed involves the sorting of waste and selection of the optimum mix in two and three combinations for electricity generation.

1.7 OBJECTIVES OF THE STUDY

- Determine the total quantity of MSW generation in Uyo metropolis.
- Characterization of the MSW composition in Uyo metropolis.
- Energy output from each of the waste composition.
- Developing a model to ascertain which of the waste combination will give a better energy output taking into consideration the quantity of MSW.
- Determining the electricity potential of MSW in Uyo

1.8 PROJECT GOAL

This research is to propose the establishment of a waste – fired power plant as a sustainable metropolitan MSW management system that utilizes MSW to generate electricity and improve the environment in Uyo metropolis of Akwa Ibom State, Nigeria.

1.9 SPECIFIC AREA OF RESEARCH

This research shall focus on the utilisation of MSW for electricity generation in Uyo metropolis of Akwa Ibom state, Nigeria.

1.10 BRIEF DESCRIPTION OF THE CITY OF UYO

Uyo is a town in southern geopolitical zone of the country. It is the centre of government in the state. The state is one of the highest producers of crude oil in the country. It was created in September 23, 1987. It has a federal University residing in the metropolis. It has a population of approximately 900, 000 people from statistics. The city has a very good road network and well plan to reduce traffic and unnecessary flooding. It has a cargo airport which up-to-date in their operation. The city is developing very fast due to high influx of investors to the state as the present government is bent on industrialization. Presently, there good roads constructed for minimization of hold-up in the city. The town is habitable with the high level of security and low menace of arm robbery incidents. The city has good hotels for quick accommodation of the foreign investors. There are lots of developmental projects that

are ungoing which makes it more habitable for both the indigenes and the foreigners (http:akwaibomstate.gov.ng).

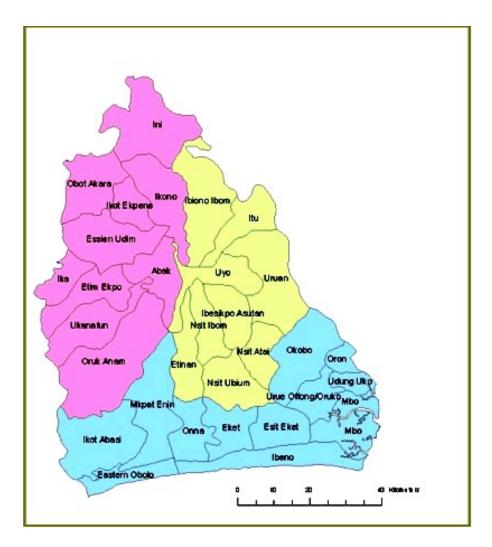


Plate 1.1 MAP OF AKWA IBOM STATE SHOWING THE CITY OF UYO

CHAPTER TWO

REVIEW OF RELATED LITERATURE

2.1 WASTE MANAGEMENT

Waste management can be explained as the procedure of obtaining utilization of waste materials (Adegoke, 1989). This particular definition is mostly associated to with large particles from human being for minimization of environmental issues. Waste management is a process that is carrying out to reduce and to recover some good resources during the process (Adegoke, 1989). This refuse management consists of all types of waste. It also involves radioactive substances and the inert matter. The process of refuse management differs from place to place, time and how exposed the place is and the awareness (Ahsan, 1998). This management of refuse should be the concern of everybody. That is government and individuals.

2.2 PROBLEMS OF INADEQUATE WASTE MANAGEMENT

This management in Nigeria has so many issues, these problems range from environmental, economic to sociocultural problems (Adegoke, 1989). It is sad, the level of awareness and environmental awareness, a sort of orientation associated to hazards of contaminated environment is very low. More attention by people are given on how to survive and not giving attention related on the orientation of waste management (Adegoke, 1989).

"At the urban centres level, poor management skills in the handling and disposal of domestic waste are also the major issue. Under this circumstance, most of the government technocrats encourage open dumps as the option of waste-disposal process. In most cases, these dumps site are situated where land is available without taking into consideration, the health hazards, safety, and also on the aesthetic values of the place. In some cases, the waste is dumped and when dried allowed to be ignited and burn gradually in the open" (Alfred, 2015). "Due to the varied/complex nature of the wastes, this practice introduces hazardous combustion products into the atmosphere which may not be habitable to the populace. Notable among these products

Sulphur dioxide, carbon monoxide, halogenated carbons, oxides of nitrogen, particulate of matter and the hydrocarbons. Moreover, the low level of financing the agencies which are responsible for handling and disposal of these waste in Nigeria has to a very big extent affected the performance and the outcome of these agency" (Agunwamba, 1998). They tend to get very little revenue or finances from the populace as very few people are served with this house to house services. Property taxes and tenement rates are not collected at all times. Authorities responsible for handling and disposal of waste-management should make efforts not to depend on government subsidies, which does not come at the right time (Ekugo, 1998).

It is known that the population of our country, Nigeria is continuously at the increase, as such the waste generated is affected by this increase. "As such, high levels of industrial development and concentration of major government establishments in the urban centres has resulted in the influx of people from the rural environment to the urban centres. Building of accommodation results in the indiscriminate construction of shanties and substandard housing without regard to the authority of the urban planning which minimizes the efficient town planning for the collection, handling and the disposal of waste" (Adegoke, 1989).

"It is only recently that the AkwaIbom State Government contracted refuse collection and disposal to waste-disposal companies, which are doing well to reduce the menace of waste management. These companies, however, cannot adequately take care of solid-waste management, as some of the municipal areas are not included and the methods of refuse collection not always adequate. For instance, these companies use shovels and open trucks, which leave droppings from wastes along the streets. Also, sorting the waste at the point source is not fully addressed. This effort by government could be better planned and expedited to ensure wider coverage and more effective participation by the people" (AkwaIbom State Waste Management and Environmental Protection Agency, 2013).

"In Uyo, cases of illegal development of squatter settlements along the waterfronts without regard to urban development regulations abound. Basic infrastructure like adequate water supply and waste-disposal systems are virtually absent in these settlements. Due to low rent and substandard accommodation, these settlements are usually grossly overpopulated. Household and human wastes are often disposed directly into the water body or simply dumped along the streets, contributing substantially to environmental pollution, and health problems" (AkwaIbom State Waste Management and Environmental Protection Agency).

2.3 CHALLENGES OF URBAN WASTE MANAGEMENT

Studies from Akwalbom State Environmental and Waste Management Agency shows that, the issues, conditions and problems of MSW management in the industrialized and civilizing countries are different from our society here in our country, Nigeria, Akwalbom State and Uyo metropolis in particular. Though it is a clear case that the developed countries generate more quantity of MSW and have resulted to developing a better facilities which has competent government institutions and bureaucracies to address and manage their municipal solid wastes. Developing countries in Africa, example Nigeria are still in the transition process towards a better municipal solid waste management but they are currently having problem of insufficient collection and issue of disposal of these municipal solid waste. In these part of the world, services and programmes that incorporate proper MSW disposal for proper management of hazardous biological and chemical wastes, reduction and recycling will be of utmost important. All these process have different degrees of negative environmental interpretations with adverse health risks and environmental factors if municipal solid wastes are not properly disposed or kept safe (Adedibu 1983).

2.3.1 Challenges of Municipal Solid Waste Management in Uyo Metropolis

At the municipal level, Uyo Township in particular, inadequate process in the management is a major issue. Lack of funds, also, is a major challenge in the management of MSW (AkwaIbom State House of Assembly second quarter proceedings, 2011). At the state government level, in 2009, the state government had a budget of N195.3 billion in which N7.807 billion was allocated for environment forming about 4% of the total budget for the state (AkwaIbom State House of Assembly second quarter proceedings, 2011). In 2010, a total of N384.8 billion was the budget and only N53.744 billion was allocated for environment forming just about 14% of the total budget in 2011(AkwaIbom State House of Assembly second quarter proceedings, 2011). The figure above has been a continuous process till 2015 which does has significantly affect the proper management of municipal solid waste (AkwaIbom State House of Assembly second quarter proceedings, 2011).

2.4 MUNICIPAL SOLID WASTE POWER PLANTS

MSW plant has being one of the most pronounce waste-to-energy technologies in the world. MSW can be burnt in this type of facility to produce energy with less processing. This process is known as mass burn. There are lot of ways in which the municipal solid waste can be process. These include direct combustion as refuse-derived fuel, by gasification process, pyrolysis and by anaerobic digestion (Albert, 1972).

All these processes of municipal solid waste application have the opportunities for landfilling, composting and for electricity generation. MSW plant is somehow cheaper, in the sense that considering other energy technologies in which the fuel supply have to be purchased, the waste to energy plant using municipal solid waste, the suppliers of the fuel which is municipal solid waste have to pay for their fuel to be evacuated (Bain, et. al, 1996). "Municipal solid waste-to-energy technology, like landfill gas recovery, allows electricity production from already existing landfills through the process of natural degradation of municipal solid waste by anaerobic fermentation also known as digestion into landfill gas. In most of the urban areas, municipal solid waste sludge is commonly used for the process of anaerobic digestion" (Mashavu, et al, 2001).

2.4.1 Mass Burn (Incinerator)

Mass burn technology is also known as incineration. This is the most common municipal solid waste combustion technology. It involves the combustion of unprocessed or less processed MSW for energy generation (Hulgaard T. and Vehlowy, 2013).

The major components of a mass burn facility are listed below"

- ✤ "Refuse receiving component, handling and storage facility.
- The combustion chamber and steam generation system that is incinerator and a boiler.
- ✤ An exhaust gas cleaning system.
- ◆ The combined power generation facility that is a steam turbine and a generator.
- ✤ A condenser for cooling system.
- A residue or ash hauling and storage system" (Mashavu, et al, 2001).

"The process of incineration start from where the incoming trucks carrying the municipal solid waste drop the waste into pits, then cranes mix the waste to remove bulky or large non-combustible items, then the waste storage area are maintained under pressure which is less than atmospheric pressure in order to prevent odours from escaping to the ambient. The cranes move the waste to the combustor-charging hopper for the purpose of feeding the incinerator" (Mashavu, et al, 2001).

The heat generated from the incineration system is now applied for steam production from the water in the boiler, the steam now channelled to a steam turbine generator for electricity production (Feldmann, 1973). The steam can now condensed through traditional method and channelled back to the boiler, a sort of economizer which increase the efficiency of the system. "Residues produced include ash below the bottom of the combustion chamber, fly ash which comes out from the combustion chamber with the flue gas a very high temperature combustion products" (Hollenbacher, 1992).

This ash residue that are available sometimes are hazardous and sometimes are not hazardous. This varies on the type of the MSW used. The best way to prevent the hazardous ash from being produce is by preventing the source of the MSW that is to be use. Another way is by treatment of the ash. These two methods divert high costs of processing of MSW in the landfills which is a centre in the handling of hazardous municipal solid waste but it increase the cost of this incineration process. It is also known that non-hazardous ash produced can also be mixed with soil for some agricultural purposes and for some civil engineering process like pavement aggregate (Boerrigter, 2002).

Permitting Issues for Mass Burn Facilities

There are some conditions that affect mass burn facilities and this include (Hulgaard T. and Vehlowy, 2013)

- Issue of meeting air quality required.
- Ability of classifying ash as a poisonous particle.
- Disposal of by-products of the process.
- Issues relating to the conflict land use acts.
- Biological resources disturbances.

- Making use of large amounts of water for cooling purposes.
- Changes to seeing quality due to traffic pattern and powers.
- Transportation effect of loading from the source to the incinerator.
- Uncertainties and opposition by the people because of safety, health, traffic, odour. That is why it is necessary and more economical for the plant to be located close to urban centres where the municipal solid waste is generated.
- Possible conflicts of which of the process the municipal solid waste be used, is it for electricity generation, waste reduction technique or is it recycling?

Types of Incinerators

Modular incinerators

These equipment units are mostly fabricated component with small capacities ranging from 6 to 122 tons of MSW per day usage (White, et. al, 1999). Most of these facilities consist of two and five chambers summing to between 20 to 420 tons daily carriage (White, et.al, 1999). The outcome of most of these facilities is steam which can be used to produce electricity. Most of these facilities are used for smaller settlement as they are not big enough to produce much energy. It is easier to design and fabricated as such has some economic advantage. "Generally, capital costs per ton of capacity are much lower for modular incinerator than for other municipal solid waste incineration options" ((Hulgaard T. and Vehlowy, 2013).

Two combustion chambers are involved in modular incinerators as compared to the mass burn incinerators (Fellner, et. al, 2007). Gases that is generated in the first chamber which is the primary chamber flow to the second chamber which is the afterburner, to ensure that more complete combustion takes place. Also having the advantage of primary pollution inhibition process. "In addition, smaller-scale plants which is less than 60 tons per day mostly operate using a batch process, rather than continuously, operating only about 7 to 18 hours per day. This facility is simple and helps in minimizing pollution" (Otte, P.1995).

Fluidized-bed incinerators

This incineration system of municipal solid waste are mostly available in the western countries and the Asia, example in Japan, where there are currently more than 180 of such facilities in use (Chandler, et. al, 1997). This plant are of average sizes making use of MSW daily. "Fluidized-bed incineration is also capturing an increasing portion of the European municipal solid waste incineration market, though it is obvious that mass-burn facility is still dominating in the market. In summary, there is no much experience with fluidized-bed incineration process as compared to the mass burn facilities" (Albert, 1972).

"In a fluidized-bed incinerator, the stoker grate is replaced by sand and bed of limestone which help the incinerator to withstand high temperatures, input by an air distribution system. The heating of the bed and the increasing of the air velocities cause the bed to bubble, which gives rise to the term Ofluidized" (Albert, 1972). The differences are seen in the relationship between bed material and the air flow. It has lots of meaning for the kind of MSW that can be incinerated. Also, the quantity of energy transferred to the recovery plant.

These are related to source separation of component like glasses, metal objects and inert matters which does not do well in the incineration processes (Bain, et.al, 1996). Also, fluidized-bed systems is highly integrated. "It can successfully burn wastes of high varying moisture and heat content, which make inclusion of wood and paper, which are all recyclable and burnable, not to be a major factor in their operation. These factors make it obvious that fluidized-bed technologies are more compatible with high-recovery recycling systems, since there might be less competition for waste streams that are both burnable and recyclable. This also makes fluidized-bed technology to be considered a very popular technology choice of municipal solid waste high-recycling cities in most of the developing world when they first had the thought of incineration" (Hulgaard T. and Vehlowy, 2013).

Cost comparative of fluidized bed incineration process and mass burn facility have not been fully concluded due to some environmental and other factor. Lots of researches are ongoing in the western world for the installations of these plant which is giving more ideas to Japan on the installation of these incineration component for the incineration of municipal solid waste for commercial purposes (Mashavu, et.al, 2001).

Grate Incineration Technology

These are used extensively for the burning of mixed MSW (Sreekrishman, et. al. 2004). In western countries approximately 85 % of installations treating municipal

solid waste use grate incineration technology. This type of facility is used for heterogeneous MSW that contains less calorific quantity (Sreekrishman, et. al. 2004). "The grate systems incineration technology include:

- Reciprocating grates
- Roller grates
- Reversed feed grates

Grate incinerators also have the following components:

- Municipal solid waste feeder
- incineration grate
- bottom discharger for ash
- incineration air duct system
- incineration combustion chamber
- Secondary and auxiliary burners

The operation involves the residence time of the waste into the incineration grates and does not exceed one hour" (Fellner, et.al, 2007). "The primary air supply ensures the direct combustion of the waste, while the secondary air seeks to achieve turbulent mixing of the waste for the complete combustion to take place. In order to accomplish complete combustion of the gases it is necessary for the gases to be at a very high temperature for some seconds. The completion of the gases coming out is shown by the levels of the carbon monoxide in the off gases. Auxiliary firing systems help in keeping the combustion gases at the reasonable temperature levels" (Otte, 1995). "The grates need to be cooled because the air is added from the bottom and high temperatures can damage the grate. There are two types of grate cooling systems and these include the water cooled grate and the air cooled grate. The utilization of the generated heat from the process of grate incineration process, since the combustion is exothermic is most commonly made through the generation of high-pressure and superheated steam coming out from the heat exchange between the flue gas which has help in absorbing the most of the heat produced and the water, in a boiler.

There are two options for the utilization of the superheated steam.

• Mainly to produce electricity alone: In This process, the high pressure steam is driven to a turbine and generator set. The energy content of the steam is now converted to kinetic energy, which is then converted to electricity through the generator and the excess heat of the low-pressure steam is cooled" (Rechberger).

• "Process to produce both electricity and hot water, also referred to as Combined Heat and Power process: In this process, the high pressure steam is driven to a turbine and generator set and the energy content of the steam is converted to kinetic energy, which is then converted to electricity through the generator. The excess heat of the low-pressure steam is converted to hot water, in a condenser, and can be used for district heating" (Rechberger, 2011).

2.4.2 ANAEROBIC DIGESTION POWER PLANT

Anaerobic digestion can be described as the way of decomposition of MSW without the application of oxygen to obtain methane. This product could be received and used as fuel to generate electricity energy (Demirel and Scherer, 2008). Biogas which is also known as biofuel means a gas produced by the biological disintegration materials without application of oxygen (Chen, et al, 2014). Biogas comes from biogenic matter and is a typical example of biofuel (Hutman et al, 2000). A particular type of fuel is particularly obtained in this process of anaerobic digestion of biodegradable matter which include municipal solid waste, biomass, sewage, manure, energy crops, energy crops (Renewable Waste Intelligence, 2013). This type of biofuel contains mainly of carbon dioxide and methane (Demirel and Scherer, 2008). This depend greatly where it is coming from, that where it is being produced. Biofuel can also be called marsh, swamp, and digester gas or simply as landfill gas (Ratanatamskul, et al, 2015). Anaerobic digester is a typical name given to a biofuel or biogas plant that make use of agricultural waste and other crops for energy production (Ratanatamskul, et al, 2015). Biofuel could be produced efficiently with the utilization of anaerobic digester (Ratanatamskul, et al, 2015). The major raw materials to be fed into this type of plant are energy crops which include maize silage or biodegradable wastes materials, food waste and sewage sludge (Bouallagui, et al, 2003).

"This material helps in preventing oxygen from accessing the waste and anaerobic bacterials activities" (Poizot and Dolhem, 2011). "This gas builds up and gradually given up into the atmosphere if the landfill site has not been properly designed to capture the gas" (Beigi, et al, 2009). "Landfill gas is hazardous for some reasons, which include Landfill gas becoming explosive when it is coming out from the landfill and gets contact with oxygen" (Chen, et al, 2008). The lower explosive limit for methane is between 6% and 17% (Demirel and Scherer, 2008). The methane content in

the biogas is more than 23 times efficient as a greenhouse gas than carbon (IV) oxide (Demirel and Scherer, 2008). It is a confirmed situation that uncontained landfill gas that is released into the atmosphere contributes significantly to the global warming effects (Poizot and Dolhem, 2011). It is obvious that landfill gas contribute to the formation of photochemical smog (Alkaya and Demirer, 20011).

Design Factors

The process of anaerobic digestion is efficiently control by the following processes (Hajji, et al, 2016):

- (i) The type of waste to be digested.
- (ii) Waste concentration.
- (iii) Waste temperature.
- (iv) The toxic materials present in the waste particle.
- (v) The alkalinity and the PH of the waste materials.
- (vi) The hydraulic retention time.
- (vii) The solids retention time.
- (viii) The ratio of food to microorganisms.
- (ix) The digester loading rate.
- (x) The rate at which toxic end products of digestion is evacuated.

Waste Characteristics

It should be noted that not all waste constituents are degraded at the same rate or completely digested to produce gas through the process of anaerobic digestion (Takashimia and Speece, 1989). There are some anaerobic bacteria that does not degrade some hydrocarbons during the process of anaerobic digestion (Strik, et al, 2005). Wastes that are not quickly dissolve in water takes a lot of time to breakdown, and as such breakdown slowly with time (Izumi, et al, 2010).

Temperature

The anaerobic bacteria consortia function under three temperature ranges. Psychrophilic temperatures of less than 68 degrees Fahrenheit produce the least amount of bacterial action. Mesophilic digestion occurs between 68 degrees and 105 degrees Fahrenheit. Thermophilic digestion occurs between 110 degrees Fahrenheit and 160 degrees Fahrenheit" (Hajji, et al, 2016). "The optimum mesophilic temperature is between 95 and 98 degrees Fahrenheit. The optimum thermophilic temperature is between 140 and 145 degrees Fahrenheit. The rate of bacterial growth and waste degradation is faster under thermophilic conditions" (Bouallagui, et al, 2003). On the other hand, thermophilic digestion produces an odorous effluent when compared to mesophilic digestion. Thermophilic digestion substantially increases the heat energy required for the process (Suhartini, et al, 2014). "In some cases, sufficient heat is not available to operate in the thermophilic range. This is especially true if flush systems areused or the milk parlour waste is mixed with the scraped manur(Bouallagui, et al, 2003). "Large quantities of dilution flush water must be heated to the digester's operating temperature" (Izumi, et al, 2010). "During cold weather, control of the flush volume is critical in maintaining adequate digester temperatures. Seasonal and diurnal temperature fluctuations significantly affect anaerobic digestion and the quantities of gas that is coming out. Operational control and bacterial storage has to be taken into consideration in the process of designing to maintain process stability and strength under a variety of temperature conditions. Temperature is a universal process variable as it influences the rate of bacterial activities and the amount of moisture in the biogas" (Hajji, et al, 2016).

Ph

In most cases, bacteria that produce methane normally need a neutral to a little bit of alkalinity of pH6.8 to 8.7 in order to produce the substance (Yang, et al, 2015). Most bacteria that aid in the formation of acid grows fasterthan that which aid in the formation of methane (Demirel and Scherer, 2008). If that which produce acid is growing faster than that which produce acid, it is well known that it would produce more acid in which the methane is likely not to consume or absorb all (Demirel and Scherer, 2008). In this situation, more acid will be available and may build up in the set-up (Beigi, et al, 2009). If large quantity of methane bacterial is produced in the anaerobic digester plant, it would therefore affect the stability of the pH (Yang, et al 2015).

Hydraulic Retention Time (HRT)

In anaerobic digestion plant design, the process is designed to make sure that the waste materials are kept for some reasonable number of days before being used for the processing (Yang, et al, 2015). This number of days that the waste particles are kept

before being used is known as hydraulic retention time (Takashimia and Speece, 1989). The Hydraulic Retention Time is mathematically expressed as the size of the reservoir or tank over the material daily intake (Ratanatamskul, et al, 2015). The hydraulic retention time is a very important aspect in the anaerobic digestion plant as it helps to know the number of days or time the bacterial would grow and the subsequent conversion of the organic matter to biogas (Sreekrishman, et al, 2004). Converting volatile solids to gas are highly enhance by hydraulic retention time and the volatile solid materials (Sreekrishman, et al, 2004).

Solids Retention Time

Solid retention time has remarkably helped in the conversion of solid materials or municipal solid waste in the reservoir to gas (Sreekrishman, et al, 2004). It helps greatly in stabilizing the digester plant. It is simplified as solids maintained in the digester divided by solid waste engage per day (Sreekrishman, et al, 2004).

Digester Loading

Both retention times does not give the full details of waste material. That is the concentration in the anaerobic digestion plant (Takashimia and Speece, 1989). In the biogas plant, not all the waste are equal, some are somehow diluted while others are concentrated (Suhartini, et al, 2014). The waste particles that are high in concentration tend to produce more gas that those that are diluted (Yang, et al, 2015). Digester loading is predominantly used in measuring the performance of anaerobic digester size and its performance (Hutman, et al, 200). The loading can be measured in weight of MSW per cubic metres of the digester size (Ratanatamskul, et al, 2015). It is mathematically expressed in unit form as (kg / m^3 / d) (Sreekrishman, et al, 2004). When calculating digester loading, it has to be taken into account, the hydraulic retention time (Takashimia and Speece, 1989).

Food to Micro-Organism Ratio

Another major factor in controlling the processes in the anaerobic digestion plant is the food to micro-organism ratio (Chen, et al, 2015). At a particular temperature, it is a very little food per day that the bacterial consume in a particular time (Strik, et al, 2005). It is proper to supply a particular number of bacteria each time or simply per day to equally consume a particular quantity of municipal solid waste (Strik, et al,

2005). Therefore, the food to micro-organism is the ratio of thequantity of MSW to the quantity of bacteria present to decompose theMSW (Yang, et al, 20015). For the waste to be converted to biogas optimally, a lower food to microorganism is required (Strik, et al, 2005). The efficiency of the anaerobic digester loading can be enhance by bringing down the food to micro-organism ration and thereby raising the concentration of the municipal solid waste in the digester (Sreekrishman, et al, 2004). Furthermore, decreasing the digester loading, improves the efficiency of the MSW in the plant (Strik, et al, 2005).

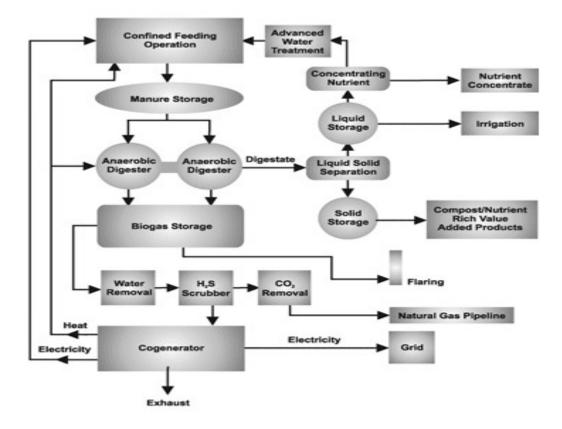


Plate 2.1: Flow chart of energy from waste for Anaerobic Digestion (Ratanatamskul, et al, 2015)

2.4.3 GASIFICATION

Gasification is a process that converts organic or fossil based carbonaceous materials into carbon monoxide, hydrogen and carbon dioxide. This is done by reacting the material at high temperatures without combustion, with a controlled quantity of oxygen and steam. This resulting in the production of syngas or producer gas which is a fuel. The power derived from the combustion and gasification of gasified compound is a source of renewable energy if the compounds used was biomass.

The important of gasification is that using the syngas is more efficient than direct combustion of the original fuel because of its combustion at higher temperatures, so that the thermodynamic upper limit to the efficiency is higher or not applicable" (Feldmann, 1973). "Another important of Gasification is that materials that would have disposed of as biodegradable waste are equally used for gasification process. The high-temperature process gives out corrosive ash elements such as chloride and potassium, allowing clean gas production from problematic fuels.

Gasification of fossil fuels is currently widely used on industrial scales to generate electricity" (Morris, 1998).

"The process of producing energy using the gasification method has been in use for more than 180 years. During that time coal and peat were used to power these plants (Smoot and Smith, 1985). Initially developed to produce town gas for lighting & cooking in 1800s, this was replaced by electricity and natural gas, it was also used in blast furnaces but the bigger role was played in the production of synthetic chemicals where it has been in use since the 1920s" (Smoot and Smith, 1985).

"It was obvious that before the world war that there was need for gasification as there were no enough fuel to meet the need of the people and satisfy the usage. Wood gas generators, called were used to power motor vehicles the developed countries. In the early and mid-1940's, trucks, earth movers and some agricultural equipment were

energized by gasification. It was obvious that there were a high number of vehicles and other earth movers were running on producer gas" (Reed and Gaur, 1998).

Chemical Reactions

- 1. The dehydration or drying process occurs at around 100°C. Typically the resulting steam is mixed into the gas flow and may be involved with subsequent chemical reactions, notably the water-gas reaction if the temperature is sufficiently high enough (Evans and Milne 1997).
- 2. The combustion process occurs as the volatile products and some of the char reacts with oxygen to primarily form carbon dioxide and small amounts of carbon monoxide, which provides heat for the subsequent gasification reactions. The letter C represent a carbon-containing organic compound, the basic reaction is hereby represented (Hollenbacher, 1992).
- 3. "The gasification process occurs as the char reacts with carbon and steam to produce carbon monoxide and hydrogen". $C + H_2O \rightarrow H_2 + CO$ (Evans and Milne, 1997).
- "In addition, the reversible gas phase water-gas shift reaction reaches equilibrium very fast at the temperatures in a gasifier". The equation is shown below;
 CO + H₂O ↔ CO₂ + H₂(Evans and Milne, 1997).

It invariably means that some amount of energy is used in the reaction to enable organic matters to be combusted to produce energy and carbon dioxide, which give room to the second reaction to further convert other organic matter to additional carbon dioxide and hydrogen. More reactions takes place when the carbon (II) oxide formed and residual moisture from the biodegradable matter produce excess carbon dioxide and methane.

Gasification Processes

There are many types of gasifiers currently in use for many engineering purposes, namely:" counter-current fixed bed, co-current fixed bed, fluidized bed, entrained flow, plasma, and free radical (NNFCC Project, 2009, PIER, 2015).

Challenges of Gasification Technology

Pre-processing of the municipal solid waste affect significantly the power output from the biogas. The consumption of high quantity of oxygen. This act as a gasification agent is also a big challenge in the gasification process (Morris, 1998). Obtaining long service intervals in the plant is considered as a serious challenge (Fryda, et al, 2008).

Current Applications

Syngas is widely used for production of heat and for mechanical and electrical generation of power. Producer gas gives greater control over power levels when compared to solid fuels, leading to more efficient and cleaner operation (Boerrigter, et al, 2005). It ca also be used for making other energy substances (Boerrigter, et al, 2005). Gasifiers plant offer an adjustable option for thermal technology applications, as they can be converted into existing gas fueled devices such as ovens, furnaces, boilers, etc. (Boerrigter, et al, 2005). Large-scale gasification technology is currently mostly used to produce electricity from fossil fuels such as coal, where the biogas is combusted in a gas turbine (Deurwaarter, et al 2005). Gasification is also used industrially in the production of electricity, ammonia and liquid fuels using Integrated Gasification Combined Cycles with the possibility of producing methane and hydrogen for fuel cells. IGCC is also a more efficient method of CO_2 capture as compared to conventional technologies" (Dry, 1981).

2.4.4 PYROLYSIS

This can be defined as the thermochemical breakdown of matter at a very high temperatures without the application of oxygen or any other element (Karagoz, 2009). "It is gotten from the Greek word pyro meaning fir and lysis meaning separating" (Karagoz, 2009).

Pyrolysis is a thermolysis process, which is as a result of organic matter being exposed at a very high temperature (Zabaniotu and Karabelas, 1999). Charring is one of the products of pyrolysis. This required the wood to be burnt to a temperature of over 1600°C (Ryu, et al, 2007). Pyrolysis also takes place when trees and grasses come in contact with volcanic eruptions, a sort of mild earth movement and when solid fuels are burning (Zabaniotu and Karabelas, 1999). Excess of pyrolysis, result in a process term carbonization (Mohan, et al, 2007).

These special and identical ways in which pyrolysis are applied could be given different names such as, cracking, destructive distillation and dry distillation (Aho, et al, 2008).

Pyrolysis can be used in analysing elements and compounds. It can also be used for spectrometry. It found its most usefulness in carbon dating. Many important chemical element, for example sulfuric acid and phosphorus, were discovered through this process. It is also the basis of pyrography (Demirbas, 2005). It happened that the ancient men made a combination of element like methanol and other hydrocarbons from the process of pyrolysis of wood (Bridgwater, 2004).

It is practically impossible, to get a totally oxygen-free environment. This is because some oxygen is available in the pyrolysis process. A little quantity undergo oxidation process (Demiral and sensoz, 2008). The pyrolysis process is applicable to breakdown organic matter. This is done in the availability of superheated steam or water. It is also used in the cracking of oil using steam (Zanzi, et al, 2001).

Occurrence and Uses

This process is regarded as the major chemical activity that takes place during the heating of wood. Carbohydrates and proteins undergo pyrolysis during cooking (Tsai, et al, 2007). Pyrolysis of fats needs a very high temperature and as such is preventable in cooking as it produces toxic and some flammable substance (Mante, 2008).

Cooking always takes place with the support of oxygen, other condition of temperatures and environmental issues applied (Demiralsensoz, 2008). "In particular, the pyrolysis of proteins and carbohydrates begins at temperatures much lower than the ignition temperature of the solid residue, and the volatile sub products are too diluted in air to ignite" (Hill, 2007).

Pyrolysis of carbohydrates and proteins need a very high temperature, so it does not occur where total boiling of the product does not take place (Hills, 2007). This process is very useful in the production of peanuts. It is also useful in the production of almonds and also found its usefulness in the production of coffee (Lua, et al, 2004). The system of pyrolysis is not only stop at the outer layer as these process involve dry

materials (Aho, et al, 2008). In every of these processes, pyrolysis developed many of these materials that help in the biological characteristics, flavour, colour of the product (Mohan, et al, 2007). Remarkably, those unpleasant substance that may spoil the taste of substance are destroyed in the process of pyrolysis (Mohan, et al, 2007).

Conditioned pyrolysis of sugars at a very high temperature produces beige and caramel which is used as a colouring agent for industries and other related factories (Hills, 2007).

It is obvious that from the ancient days, Pyrolysis is known as the process of turning wood into charcoal for industrial scale. Sawdust could be applied for this process (Aho, et al, 2008).

The complete burning of wood produces the process of carbonization which is a complete process of pyrolysis which leave inorganic ash and carbon as residues (Toole, et, al, 1961). The heat produced by heating some of these wood and the by-products pyrolyzes the pile completely (Toole, et al, 1961). The best option of volatile product condensation and less pollution experience in the process is to burn the wood in a close system or container (Papadikis, et al, 2011). Remains of partial organic pyrolysis for instance from burning fires, are proved to be the most important aparatus in the type of soils available around some basins which is highly required for agricultural purpose in those regions. There are presently lot of efforts and interest in creating these type of soil in other part of the world for agricultural purposes by the process of pyrolysis of organic matters and biochar (PYTEC 2005).

It is obvious and proven in the process of pyrolysis that biochar improves the soil ecology and texture. By so doing optimizes the ability of the soil to hold fertilizers and gradually releases them (PYTEC, 2005). This process, as it produces the nutrients at much lower value, it helps remarkably in minimizing the risk of water table contamination (PYTEC, 2005).

Pyrolysis is used extensively in converting coal into coke for metallurgical processes, especially in the production of iron and steel. It is also known that Coke can also be gotten from the petroleum refining processes (Mohammed, et al, 2012).

The coke process involves burning the material in tight system to a high temperature of about 3,300 °C. This help the molecules to be decomposed into smaller volatile substances. Which allow the system, and the porous residue that contain carbon and

non-biodegradable ash (Zhao, et al, 2001). Carbon fibers are widely used in the production of yarns and other textile materials (Hill, 2007).

Another means of application of this process is of coating. In this case, a preformed mixture with a coating of carbon element is applied.(Ryu, et al, 2007). "This is typically applicable in a fluidized bed reactor heated to a very high temperature" (Aho, et al, 2008). "As a means of producing bio-oil which can be used as a biofuel, with the removal of valuable bio-chemicals which is used as food additives or pharmaceuticals, pyrolysis processes produce lot of chain outcome from these processes" (Zhang, et al, 2007).

Higher efficiency is obtained in the pyrolysis process in which finely grounded feedstock is heated to a very high temperature in a very short interval of time (Brown, et al, 2001).

Biofuel is also obtained by pyrolysis from other types of feedstock. Including waste from turkey and pig husbandry. This is a process termed thermal depolymerization in addition to other processes aside pyrolysis (Tsai, et al, 2007).

Anhydrous pyrolysis is another method of application of pyrolysis to produce biofuel from plastic waste. This gave room to the plan of moving some vehicles, other earth movers and airplanes using fuel from the recycled plastic waste (Scott, et al, 1999).

"Pyrolysis of waste tires can separate solids in the tire, such as steel and black carbon, from volatile liquid and other gaseous compounds that can be used as biofuel" (Scott, et al, 1999). Pyrolysis of waste from tires and other plastics has been mostly obtained in the whole world. There are marketing, economic and legislative bottleneck for efficient adoption of this process (Toole, et al, 1961).

Processes

- Incomplete burning of the wood products by injecting air results to bad outcome of products (Mohan, et al, 2007).
- "Direct heat transfer with a high temperature gas, the most current one being product gas that is continuously heated and recycled but the problem of providing high quantity of heat with reasonable gas flow rate".

• Direct heat transfer with circulating solids in which Solids transfer heat between a burner and a pyrolysis reactor which is tough and effective but a very complex technology" .(Brown, et al, 2001).

Industrial Sources

There are many sources of organic materials which could be used as feedstock for pyrolysis (Ahmad, et al, 2010). Distillers grain and paper sludge are some industrial by-products of pyrolysis (Ryu, et al, 2007). Mechanical, biological treatment and anaerobic digestion are some of the possible integration of this process (Downie, 2007).

Industrial Products

- There are lots of energy needed for other production processes and pyrolysis which make use of biogas. For example, a combination of hydrogen and carbon (II) oxide which is produced in enough quantity (Yeboah, et al, 2003).
- Fertilizer in a biochar form can also be gotten from solid char which could be recycled or burned as energy (Asadullah, et al, 2007).

Table 2.1POWER GENERATION STATISTICS 2010 - 2014

(Energy Produced, Turnover and Cost of Operation)Source: National Bureau of

Statistics & Nigerian Electricity Regulatory Commissionaa

YEAR (OUARTER)	TOTAL ENEGRY GENERAATED (MWH)	TURNOVER(=N=)	COST OF OPERATION LESS LABOUR COST (=N=)
2010-1	5,717,100.00	102,928,435.00	56,503,619.00
2010-2	5,828,129.00	91,486,241.00	68,925,194.00
2010-3	9,579,453.00	131,767,707.00	67,726,536.00
2010-4	9.310.433.00	157.759.670.00	77.705.796.00
2011-1	7,106,293.00	113,751,572.00	70,252,826.00
2011-2	6,492,563.00	120,525,811.00	77,610,969.00
2011-3	7,299,087.00	134,314,066.00	81,010,499.00
2011-4	5,701,610.00	103,429,588.00	78,048,589.00
2012-1	6,034,610.00	118,869,427.00	80,939,440.00
2012-2	6.378.710.00	153.190.573.00	101,333,028.00
2012-3	6,473,896.00	181,924,904.00	69,902,086.0
2012-4	7,375,650.00	187,644,535.00	74,660.238.00
2013-1	7,004,010.00	173,950,373.00	76,581,331.00
2013-2	6,658,166.00	183,480,808.00	77,579.273.00
2013-3	8,281,938.00	206.162,242.00	81.496.250.00
2013-4	7.413.946.00	189.343.023.00	94.310.622.00
2014-1	7,598,306.00	192,836,345.00	95,167,201.00
2014-2	8,086,013.00	202,674,802.00	101,333,026.00
2014-3	7,427,726.00	212,061,004.00	91,613,671.00
2014-4	8,012,866.00	202,687,647.00	84,518.937.00
TOTAL	143,780,505.00	3,160,788,773.00	1,607,219,131.00

NIGERIAN ELECTRICITY SUPPLY CORPORATION (NIGERIA) LIMITED

Table 2.1	POWER	GENERATION	STATISTICS	2010 - 2014	CONTINUED

	TOTAL ENEGRY GENERAATED (MWH)	TURNOVER(=N=)	COST OF OPERATION LESS LABOUR COST (=N=)
2010-1			
2010-2			
2010-3			
2010-4			
2011-1			
2011-2			
2011-3			
2011-4			
2012-1			
2012-2			891,562,640.0
2012-3	1,273.43	11.645.517.35	913,122,640.0
2012-4			891,562,640.0
2013-1			685,666,489.7
2013-2			690,667,691 1
2013-3			790,090,486.9
2013-4	17,442.02	158,235,404.87	807,875,511.9
2014-1			754,244,684.24
2014-2	13,109.65	120,588,143.62	747,321,619.2
2014-3			747.025.979.2
2014-4	784.02	7.125.971.69	791,054,862.9
TOTAL	32,609.12	297,595,037.53	8,710,195,245.4

NOTE: COMMERCIAL OPERATION COMMENCED IN APRIL, 2015 BUT TRAIL RUNS OF SOME UNITS TOOK PLACE IN 2013 AND 2014 COST OF OPERATIONS EXCLUDES:HEAD OFFICE EXPENSES, PROVISION OF DOUTHFUL DEBT

	TOTAL ENERGY GENERATED (MWH)	TURNOVER(N)	COST OF OPERATION LESS LABOUR COST
2010-1			
2010-2			
2010-3			
2010-4			
2011-1			
2011-2			
2011-3			
2011-4			
2012-1			
2012-2			
2012-3			
2012-4			
2013-1			10,184,862.92
2013-2	77,734.28	703,852,515.68	587,469,646.47
2013-3	165,633.72	1,503,874,186.14	915,970,437.74
2013-4	201,120.17	1,823,397,029.25	1,184,989,989.83
2014-1	326.384.06	2.970.665.182.53	1.324.249.096.66
2014-2	328,917.49	2,991.776,850.60	1,289,356,953.76
2014-3	382,741.60	3,526.763,990.15	1,446,933,431.92
2014-4	500,613.88	4,700,096.722.30	2,126,137,092.49
TOTAL	1,983,145.20	18,220,426,476.65	8,885,291,511.79

Table 2.1 POWER GENERATION STATISTICS 2010 – 2014 CONTINUED

NOTE: COMMERCIAL OPERATION COMMENCED IN MAY 2013

- BUT TRAIL RUNS OF SOME UNITS TOOK PLACE IN APRIL 2013

COST OF OPERATIONS EXCLUDES: HEAD OFFICE EXPENSES, PROVISION OF DOUBTFUL DEBT

2.5 INTEGER LINEAR PROGRAMMING (ILP)

According to Brucker and Knust, 2000, an integer linear programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In some settings, the term is called integer linear programming (ILP), in which case, the objective function and the constraints are linear. A very special case is given 0-1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied (Brucker and Knust, 2000).

Canonical and Standard Form for ILPs

An expression for integer linear program in canonical form is as follows;

 $\begin{array}{ll} \text{maximize} \quad \mathbf{c}^{\mathbf{T}} \mathbf{x} \\ \text{subject to} \quad A \mathbf{x} \leq \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0}, \\ \text{and} \quad \mathbf{x} \in \mathbb{Z}^n, \end{array}$

The standard form for ILP is mathematically shown as follows;

$$\begin{array}{ll} \text{maximize} \quad \mathbf{c}^{\mathbf{T}} \mathbf{x} \\ \text{subject to} \quad A \mathbf{x} + \mathbf{s} = \mathbf{b}, \\ \mathbf{s} \geq \mathbf{0}, \\ \text{and} \quad \mathbf{x} \in \mathbb{Z}^n, \end{array}$$

Where entries of **c**, **b**are vectors and A is a matrix, with integer values.

CHAPTER THREE

MATERIALS AND METHODOLOGY

This methodology involves sampling identification, sorting technique processes and laboratory work in order to estimate the calorific value of municipal solid waste (MSW) in Uyo metropolis. Of great important was the electricity generation method.

3.1 WASTE COLLECTION

Secondary information for collection and quantity of municipal solid waste in Uyo metropolis was source from AkwaIbom State Waste Management and Environmental Protection Agency.

3.2 MUNICIPAL SOLID WASTE SAMPLING

The spot sampling method was adopted in the sampling and sorting procedure. The spot sampling method required the sample to be taken from dumpsites from the same source where an amount of waste (100kg) is collected and the total quantity taken from 10 sites to form a sample value of 1000kg, to be sorted. 10 sample of MSW collected from waste from 10 identified site in Uyo. The process took place in November and December, 2014 happened to be dry season in the city. The sorting was carried out base on the following components; Organic, paper- carton, glass, plastics, iron and metal packaging, textiles, wood, leather and elastics, inert matters, others.

3.3 THE SEGREGATION PROCESS AND RATIO PREPARATION

The samples were segregated into their various components. Combustible municipal Solid waste mix (MSWM) of two combinations of six different mix (plastic/textile, wood,

leather-P/TWL, plastic organic-P/O, plastic/paper-carton-P/PC, textile, wood, leather/organic-TWL/O, textile, wood, leather/paper-carton-TWL/PC, organic/paper-carton-O/PC) across five different ratios of 9:1, 8:2, 7:3, 6:4, 5:5 were prepared taking into consideration, their availability (i.e. the total quantity of waste to be combusted at a particular time to have the required calorific value).Three combinations of four

different mix (P/TWL/O, P/TWL/PC, P/O/PC and TWL/O/PC) across three different ratios of 5:4:1, 5:3:2 and 4:3:3 were also prepared(combusted in a bomb calorimeter). The selection ratio were based on the higher calorific value also considering availability combining with the one with next calorific value and also considering availability.

3.4 INTERPRETATION OF REPRESENTATION

Plastics – P Textiles, wood and leather- TWL Organic- O Paper-carton- PC Glass- G Iron and metal packaging- IM Inert matter- INM Others-OT Plastics/Textiles, wood, leather- P/TWL Plastics/Organic- P/O Plastics/Paper-carton-P/PC Textiles, wood, leather/Organic-TWL/O Textiles, wood, leather/Paper-carton- TWL/PC Organic/Paper-carton- O/PC Paper/Textiles, wood, leather/organic- P/TWL/O Plastics, Textiles, wood, leather/paper-carton- P/TWL/PC Plastics/organic/paper-carton- P/O/PC Textiles, wood, leather/organic/paper-carton- TWL/O/P

3.5 LINEAR PROGRAMMING MODEL

Model Formulation

Indexes

Let i = Number of two combination of municipal solid waste (i = 1, 2, ..., m)

j = Number of three combination of municipal solid waste (j = 1,2,...n)

k = Number of municipal solid waste (k = 1,2,...l)

Parameters of the Model

Let x_i = Tons of *i* type of two combination of municipal solid waste

 y_j = Tons of *j* type of three combination of municipal solid waste

 A_i = Calorific value per unit ton of *i* type of two combination of municipal solid waste

 B_j = Calorific value per unit ton of *j* type of three combination of MSW

 p_k = Tons of *k* type of MSW

 Q_k = Maximum availability (tons) per year of k type of municipal solid waste

Max
$$\sum_{i=1}^{m} A_i x_i + \sum_{j=1}^{n} B_j y_j$$

Subject to

$$x_{1} = 0.9p_{1} + 0.1p_{2}$$

$$x_{2} = 0.8p_{1} + 0.2p_{2}$$

$$x_{3} = 0.7p_{1} + 0.3p_{2}$$

$$x_{4} = 0.6p_{1} + 0.4p_{2}$$

$$x_{5} = 0.5p_{1} + 0.5p_{2}$$

 $x_6 = 0.9p_1 + 0.1p_3$ $x_7 = 0.8p_1 + 0.2p_3$ $x_8 = 0.7p_1 + 0.3p_3$ $x_9 = 0.6p_1 + 0.4p_3$ $x_{10} = 0.5p_1 + 0.5p_3$

$$x_{11} = 0.9p_1 + 0.1p_4$$
$$x_{12} = 0.8p_1 + 0.2p_4$$

$$x_{13} = 0.7p_1 + 0.3p_4$$

$$x_{14} = 0.6p_1 + 0.4p_4$$

$$x_{15} = 0.5p_1 + 0.5p_4$$

$$x_{16} = 0.9p_2 + 0.1p_3$$

$$x_{17} = 0.8p_2 + 0.2p_3$$

$$x_{18} = 0.7p_2 + 0.3p_3$$

$$x_{19} = 0.6p_2 + 0.4p_3$$

$$x_{20} = 0.5p_2 + 0.5p_3$$

$$x_{21} = 0.9p_2 + 0.1p_4$$
$$x_{22} = 0.8p_2 + 0.2p_4$$
$$x_{23} = 0.7p_2 + 0.3p_4$$
$$x_{24} = 0.6p_2 + 0.4p_4$$
$$x_{25} = 0.5p_2 + 0.5p_4$$

$$x_{26} = 0.9p_3 + 0.1p_4$$
$$x_{27} = 0.8p_3 + 0.2p_4$$
$$x_{28} = 0.7p_3 + 0.3p_4$$
$$x_{29} = 0.6p_3 + 0.4p_4$$
$$x_{30} = 0.5p_3 + 0.5p_4$$

$$y_1 = 0.5p_1 + 0.4p_2 + 0.1p_3$$
$$y_2 = 0.5p_1 + 0.3p_2 + 0.2p_3$$
$$y_3 = 0.4p_1 + 0.3p_2 + 0.3p_3$$

$$y_{4} = 0.5p_{1} + 0.4p_{2} + 0.1p_{4}$$

$$y_{5} = 0.5p_{1} + 0.3p_{2} + 0.2p_{4}$$

$$y_{6} = 0.4p_{1} + 0.3p_{2} + 0.3p_{4}$$

$$y_{7} = 0.5p_{1} + 0.4p_{3} + 0.1p_{4}$$

$$y_{8} = 0.5p_{1} + 0.3p_{3} + 0.2p_{4}$$

$$y_{9} = 0.4p_{1} + 0.3p_{3} + 0.3p_{4}$$

$$y_{10} = 0.5p_{2} + 0.4p_{3} + 0.1p_{4}$$

$$y_{11} = 0.5p_{2} + 0.3p_{3} + 0.2p_{4}$$

$$y_{12} = 0.4p_{2} + 0.3p_{3} + 0.3p_{4}$$

$$p_{k} \leq Q_{k}; \qquad k = 1,2, ... l$$

$$\sum_{i=1}^{m} x_{i} + \sum_{j=1}^{n} y_{j} = \sum_{k=1}^{l} Q_{k}$$

$$x_{i} \geq 0; \qquad i = 1,2, ... m$$

$$y_{j} \geq 0; \qquad j = 1,2, ... n$$

3.6 TEST FOR CALORIC VALUE

Test procedure for calorific value (CV) of MSW by the Bomb Calorimeter was employed. The process involves the estimation of CV of analysed sample of MSW by the bomb calorimeter. The standard process does not take some safety procedure precautions into consideration in its usage. The laboratory technician, technologist or person making use can as his or her own, proffer the safety guide for its usage.(ASTM E711-87(2004).

3.7 EXPERIMENTAL SET-UP

The drying process

Sub- samples, each weighing 100kg were collected from the samples and drying in a cabinet (bomb calorimeter) at 90°C to a particular weight for removal of water content to about 10% and calorific value were recorded.

Determination of the optimal quantity of municipal solid waste mix

Linear programming model was applied to obtain the best mix taking into consideration the availability, quantity and calorific value of municipal solid waste.

Determination of the calorific value (CV) of municipal solid waste mix (MSWM)

The CV for these components were carried out in accordance with **ASME E711-87** standard using the bomb calorimeter method. The major component in the experimental set-up involves the bomb calorimeter. This is the apparatus used in calculating the heat energy from the combustion process. The process of this equipment takes place in a water bath. The heat that is release into the water can be seen by the reading of the thermometer. The structure of the set-up involve the following:

- Steel bomb which contains stating materials
- Water bath for the bomb to be immersed
- Thermometer
- A motorized stirrer
- Ignition material

All the elements mentioned above are inside the external wall of the calorimeter. After the first temperature of the liquid is taken, the hot wire inside the bomb begins to react. The temperature is then taken after the combustion has taken place. The difference in temperature is then estimated.

The procedure is taking place in the atmospheric pressure which is below the oxygen in the atmosphere. This helps in the total combustion of MSW in the set-up. Data were taken for different types of MSW and MSWM in the calorimeter.

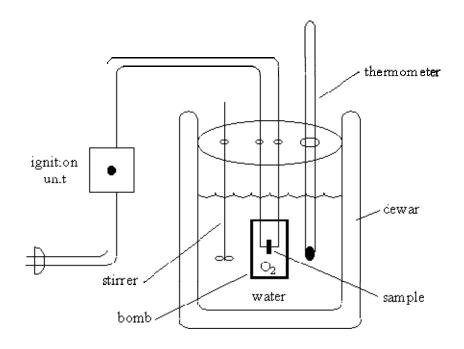


Plate 3.1 The Bomb Calorimeter

Plate.3.2 pictorial view of the Bomb Calorimeter

The set-up involves mainly of the following sample; Oxygen, stainless steel bomb, water. The dewar helps in maintaining heat present in the calorimeter not to be absorbed by the ambient.

i.e., $q_{\text{calorimeter}} = 0$

 $w_{\text{calorimeter}} = p \, \mathrm{d}V = 0$

Then, change in internal energy, U, for the set-up tending to zero

 $U_{\text{calorimeter}} = q_{\text{calorimeter}} + w_{\text{calorimeter}} = 0$

The meaning of this process is that the set-up is isolated from other environment.

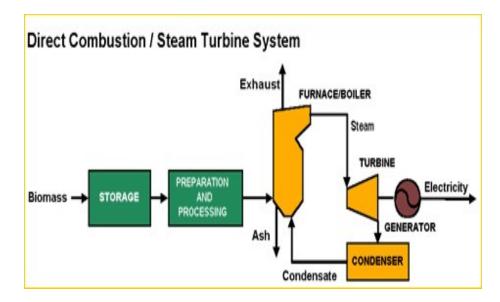


Plate 3.3 Incineration/Steam Turbine System

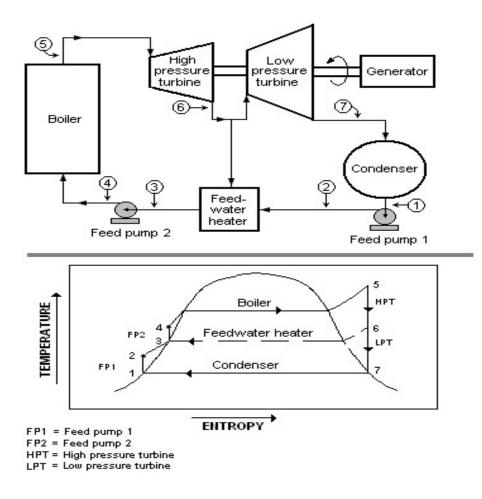


Fig 3.1 Thermodynamic process cycle

THERMODYNAMIC EQUATION OF THE PLANT

Specific Volume,
$$V_s = \frac{Volume}{mass} = \frac{V}{m} (M^3/Kg)$$
------(1)
 $V_s = 1/\rho$ where $\rho = mass \ density = M/V (Kg/m^3)$ ------(2)

Specific volume, V_s is independent of both T and P (temperature and pressure) in simple compressible systems $\Rightarrow V = m * V_s$ ------(3)

 $m = \rho * V - \dots$ (4)

 $V_{saturated \ liquid} = V_f$ $V_{saturated \ vapour} = V_q$

m_{saturated} liquid – m_f

 $m_{saturated \ vapour = m_a}$

for a liquid vapour mixture at equilibrium $V - V_f + V_g(m^3) - - - - - (5)$

 $m * V_s = V_f + m_g * V_f (m^3)$ -----(6)

m = total mass in both phases (liquid and gaseous stage)

V = total volume occupied by both phases (liquid and gaseous stage)

 $m = m_f + m_{g}$ (7)

Rearranging (7) to eliminate m_f from 6; $m_{f=} m - m_a$. Substituting for m_f in (6) \Rightarrow

Rearranging (7) to eliminate m_f *from 6;* $m_{f=} m - m_g$. *Substituting for* m_f *in (6)* \Rightarrow

$$m * V = (m - m_g) * V_g + m_g * V_f$$
 (8)

Now solving for
$$V_{s=}V \Rightarrow V = V_f \left(\frac{m-m_g}{m}\right) + V_g \left(\frac{m_g}{m}\right), m^3/kg$$
------(9)

Internal Energy: This is a thermodynamic property that is associated with change in temperature $U \Rightarrow U = U_{liq} + U_{vap}$ ------(10)

OR

 $m_{u=}m_{liq}u_f + m_{vap}$ (11)

Dividing by m and introducing the quality x gives

 $U = (1 - x)u_f + xu_g - \dots$ (12)

 $x \Rightarrow$ quality in %

Enthalpy: This can be expressed and calculated asH = mh------ (13)

Where *H*=*Enthalpy*

$$M = mass (kg)$$

 $h = Specific enthalpy (Kj/Kg)$

Specific enthalpy: This is the property of the fluid

h = u + pv

(14)

Where H=Internal energy (Kj/Kg)

 $P=absolute \ pressure \ (N/m^2)$

V= specific volume (m^3/Kg)

Specific enthalpy of water $\Rightarrow h_f = c_w (t_f - t_o)$ ------(15) Where h_f = enthalpy of water (kj/kg) $C_w =$ Specific heat of water = 4.19 (kj/kg°C) t_f = Saturated temperature (o_c) $t_o = refer temperature$

Specific enthalpy of superheated steam $\Rightarrow h_s = h_g + C_{ps}(t_s - t_f)$ --- (16)

Where; h_s = enthalpy heat of steam at constant pressure = 1.860 (kj/kgo_c)

 $t_{f} = Saturated \ temperature^{\circ}c$ $t_{s} = supersaturated \ steam \ temperature^{\circ}c$ $C_{ps} = 1.860 \ (kj/kg^{\circ}c \ at \ standard \ atmosphere \ and \ varies \ with \ temperature$ $C_{ps} = Specific \ heat \ of \ steam$

Specific enthalpy of evaporation $\Rightarrow h_e = h_g - h_f$ ------ (17)

Where $h_e = \text{specific evaporation enthalpy } (Kj/kg)$ (parameters reference to the steam table).

3.8 Related Dulong's Equations to Electrical Power Potential

Dulong equation is used extensively in the determination of the electricity potential of MSW in so many developed and developing countries. It can therefore, be applicable in the underdeveloped country, like Nigeria and Uyo as a case study.

The calorific value of municipal solid waste in Uyo metropolis is given by;

The summed product of the calorific value (MJ/Kg) of dry matter multiplied by the component of the municipal solid waste divided by the number of components that possess calorific value.

Therefore, Let A= Components in the MSW.

 $\mathbf{B} = CV$ in (MJ/Kg) of dry matter

C= Components with calorific value=5

The summed product of the calorific value (MJ/Kg) of dry matter =

 $\sum (A)X(B)/C$

This value is multiplied by 1000 in order to have the MJ/Ton equivalent and then transformed to KWh/ton = MJ/ton.

Therefore, average CV of MSW generated in Uyo in KWh/ton = Average CV of MSW (MJ/ton)/3600 X 1000)

If we take the conventional thermal efficiency of 40%. The specific power output per ton of waste (Kwh/ton) occurs by multiplying the average calorific value by 0.40

The electrical potential for municipal solid waste mass combustion plant is estimated thus;

Electrical potential (MW) = (MSW generation X Specific energy release per tonne of MSW) / Average calorific value of waste)/ 1000

The value gives an indication of the maximum capacity level at which a municipal solid waste plant could be developed taking into consideration a 100% mass use of MSW produced in Uyo.

3.9 THE PRODUCTION ASSESSMENT

The electricity production assessment is aim at identifying some areas of research which include electricity output from the MSW in Uyo metropolis. The analysis of daily generation, monthly generation and yearly generation of MSW calculation using a particular range of load factor according to Panagiotis, 2003. Also, the total power production taking all factors of plant into consideration.

The concurrent evaluation of the heat flow rate (Btu/kWh) acts as a verification method to the calculations certifying their validity (Panagiotis, 2003).

Load Factor

The plant load factor can be explained as the ratio of Actual Operational Capacity over Optimal Operating Capacity (Panagiotis, 2003). In the particular MSW plant the Optimal Operating Capacity is 8MW and the Actual Operational Capacity is accounted in the range between 3.4 to 5.4 MW according to Ikywashima, a variation of load factor in the range of 34% to 54% is considered feasible taking some factors into For the combustion plant in research the current load factor is defined at 44% due to the plants' developed set-up complexity and capacity levels. Load Factor = Actual Operational Capacity/Optimal Operating Capacity.

Heat Rate:

In case of the current study, the heat rate for electricity production of one kilowatthour is given with a value of 3412 Btu/kWh which is equivalent to 3597.4kJ/Kwh (Panagiotis, 2003).

Summary of the equations

Quantity of MSW in combustor (Kg/hr) = (Btu/hr)/Average Btu/kg of MSW Quantity of MSW in Combustor (Tonnes/day) = Qty of MSW (kg/hr) X 24/1000 Quantity of MSW in combustor (Tonnes/year) =MSW (Tonnes/day)X365 KWh Annual production=Maximum capacity X load factorX24X365 Heat rate= (Btu/hr) X 24 X 365/KWh Annual Production (Panagiotis, 2003).

3.10 STATISTICAL ANALYSIS FOR THE EXPERIMENTAL RESULTS Theoretical Background

The Central Limit Theorem

If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size n taken from a population (either finite of infinite) with mean μ and finite variance σ^2 , and if \overline{x} is the sample mean, the limiting form of the distribution of $\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$ as $n \to \infty$, is the standard normal distribution.

Statistical Interval

When n is large, the quantity $\frac{\overline{x} - \mu}{s/\sqrt{n}}$ has an approximate standard normal distribution. Consequently $\overline{x} - Z\alpha_{/2}\frac{s}{\sqrt{n}} \le \mu \le \overline{x} + Z\alpha_{/2}\frac{s}{\sqrt{n}}$ ------ (eqn 3.41) is a large sample confidence interval for μ , with confidence level of approximately $100(1 - \alpha)\%$.

Equation (3.41) holds regardless of the shape of the population distribution. Generally, for central limit theorem n should be atleast 40 to use this result reliably, while for T-distribution, n should be atleast 5 to use the result reliably The central limit theorem generally holds for $n \ge 30$.

Data Description

Sample Mean $\overline{\mathbf{x}} = \frac{x_1, x_2, x_3, \dots, x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$ (eqn.3.42) Sample variance $S^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$ (eqn.3.43) Sample standard deviation $S = \sqrt{S^2}$ ------(eqn 3.44)

3.11 ECONOMIC

In this type of a project to be developed in any metropolis or an urban centre, there is need for feasibility analysis to be taken into consideration. That is to say, is it going to be viable? Taking into consideration, the following;

- Net Present Value (NPV)
- Internal Rate of Return (IRR)
- Pay Back Period (PBP)

Merits of Net Present Value (NPV)

- ◆ The approach is consistent with the theory of wealth maximization.
- ✤ The approach considers the time value of cash.
- * The approach considers the business flow of money in the period of the business.
- ✤ It helps in deciding whether to go into the business or not

Summary of Net Present Value and Internal Rate of Return Comparison

- ✤ NPV is more popular than the IRR.
- Where cash flow patterns are non-conventional, there may be nil or several internal rates of return making the internal rate of return impossible to apply.
- Net present value is powerful for selecting project according to their values.
- ✤ IRR are used where NPV cash flow are not directional.

3.12 MATERIALS AND CONSTRUCTION ANALYSIS FOR THE TESTING PLANT

The factors considered during the design of this plant were;

Major Considerations

- 1 Component Selection (boiler, micro turbine and generator)
- 2 Fabrication (incinerator/combustion chamber, turbine and generator stand)

General Considerations

- ✤ Waste type
- Volume of waste
- ✤ Lagging material
- Insulation thickness
- Heat generation
- Construction
- Assembly
- Strength of materials
- ✤ Wear
- Corrosion
- Size and shape
- Cost
- ✤ Maintenance
- energy requirement
- Resistance to high pressure
- Resistance to high temperature
- Thermal conductivity
- Combustion process (air-fuel ratio)
- Electrical conductivity
- Heat losses
- Support devices, etc.

(a) Incinerator

Incinerator is a component used in burning municipal solid waste and other substances in high temperature which in turn generate heat which can be used for other purposes. It has different shapes ranging from rectangular, square-like, circular or round, etc.

The fabrication Machines involved in the fabrication processes were:

- Cutting machine
- ✤ Lathe operation
- Bending
- ✤ Welding
- ✤ Grinding

- Lagging
- Spraying Operation

Cutting Operation

Cutting machines are machines that are used in cutting materials in the machining shop. They are of types depending on the volume of materials to be cut. Grinding machine is a cutting machine that removes comparatively little quantity of materials from the parent material. Example, are the different types of saw; band saw, circular saw, diamond wire cutting, firewood processor, manual hacksaw and power hacksaw, punch press, ring saw, sizzix, swing saw, etc. The cutting operation was done to get the different sizes of the part of the incinerator to be fabricated. Also, cutting operation was applied in the cutting of the angle iron bars for the turbine and the generator stand.

Lathe Operation

This is the component that used in arranging workpiece to the desired shapes and size. This rotates a workpiece on the axis for the work to be done. The general work involve facing, knurling, deformation, etc.

Welding operation

For the purpose of his project, oxy-acetylene welding and electric arc welding was used together to achieve some goals.

Lagging Operation

Lagging is the finishing material (steel or aluminium, fibreglass, clay, cellulose, etc) used in order to reduce lost of heat to the environment.

Finishing processes

This involved processes such as surface smoothing and removal of rough edges, brushing and painting.

Tools and Materials Required for the Fabrication

In the course of this project various engineering tools and materials were employed, these include; steel rule, measuring tape, scriber, try square, center punch, hacksaw, hammer and spanners. The following machine tools were used; welding machine and its accessories, drilling machine and spraying machine. in course of the project, consumable materials that were used include mild steel sheets, 2inch pipes, welding electrodes, soft solders, soldering flux, assorted bolts, nuts, and screws, brushes, 11 inch angle bars, varnish, paint, 1.5 gauge coil wire and flexible wires.

Mainframe construction: the mainframe of the machine is the support at which all other machine components are mounted on. The material used in its construction was angular bar of 20mm (mild steel) this was chosen in order to give enough support to the machine during operation also to reduce weight of the machine and vibration. The joining of the mainframe involved measuring and cutting off the angular bar to the appropriate dimension and then welding the bar together to from the component in fig. above. Dimension of the mainframe are as follow. See Appendix 1

Bearing selection

Two rolling contact bearing were selected and mounted on the drive shaft in order to withstand the load imposed on the machine. This bearing was chosen because of its ability to withstand momentary shock loads and accuracy in shaft alignment. Also, it is reliable in service has low cost of maintenance and easy to mount on the shaft.

Assembly Process

In all the three main points of the cassava system machine which include the feed hopper, sifting chamber and the power unit were assembled together by welding and mechanical fastening using bolts and nuts. The mechanical fastening was to enable easy access to the internal components of the machine such as the brushes and sifting mesh maintenance and repairs purposes.

- Convenient features (Ergonomics): All the part was loaded at convenient position for ease of operation and control.
- Type of load and stresses caused by the load being stress on the driver shaft, shear stress on the driver shaft, radial load on the drive shaft etc.
- Use of standard parts: The parts and parameters were chosen according to Indian standard ranging
- **Maintenance:** cleaning and lubrication of machine parts are easy. In addition it is easy to replace any damaged part by the service personnel because of the simplicity of the machine.

Tools and materials

In the course of this project various engineering tools and materials were employed, these include; steel rule, measuring tape, scriber, try square, center punch, hacksaw, hammer and spanners. The following machine tools were used; welding machine and its accessories, drilling machine and spraying machine. in course of the project, consumable materials that were used include mild steel sheets, 2inch pipes, welding electrodes, soft solders, soldering flux, assorted bolts, nuts, and screws, brushes, 11 inch angle bars, varnish, paint, 1.5 gauge coil wire and flexible wires.

(a) Boiler

A boiler can be described as a device for creating steam by the used of heat energy to liquid. Liquid in this case, water. For the purpose of this research and for the testing plant, steam boiler selection will be adopted, taking into consideration the expected temperature and pressure required. Also taking into consideration, the quantity of MSW to be used as fuel.

(b) Turbine

This component converts the steam produce at high temperature and pressure to mechanical energy (rotary motion). Which invariably create an electromotive force in the generator. For the purpose of this research and for the testing plant, steam turbine selection will be adopted, taking into consideration the expected temperature and pressure required. Also taking into consideration, the quantity of MSW to be used as fuel.

(c) Generator

A generator is a component that convert rotary energy to electrical energy by creating an electromotive force in the electric field. The origin of this energy in this case is a mechanical energy from the burnt MSW in the combustion chamber. For this research and for the testing plant, electrical generator selection will be adopted, taking into consideration the expected power output expected to derive from the MSW which is used as fuel.

S/N	Parts	Materials used	
1	Incinerator (Combustion chamber)	Mild steel	
2	Boiler support	Mild Steel	
3	Boiler	Stainless Steel	
4	Micro turbine	Cast Iron	
5	Generator	Cast Iron with Wind	
6	Steam pipe	Mild Steel	
7	Concrete slap	Alloy Rubber	
8	Micro turbine and Generator stand	Mild Steel	
9	Incinerator stand	Stainless Steel	
10	Gauges	(ball bearing) Cast	
		Iron	
11	Pressure valve	Stainless Steel	

Table 3.1 Materials Required for the Fabrication Process:

See Appendix 1: BEME

3.13 Design of municipal solid waste power plant

This is mainly a 3-D drawing of the municipal solid waste plant. See appendix 2.

3.14 EMISSION

Emission characterization and date were source from literature search. Municipal solid waste, generally, is a big class of waste component. In which the classes have other sub –type, etc. For this research, the municipal solid waste is grouped as follows:

- Organic
- Textiles wood and leather
- Paper-carton
- Plastics
- Metals
- ✤ Glass
- Inert matter
- Others

Considering organic waste for the emission analysis; the waste have different sub constituents that emit different types of emissions, though there are predominantly major emission associated with this type of waste.

Taking plastics into consideration for the same analysis, the outcome still follow the same path as the plastics are of so many types and all have different emission components due to their constituent elements.

Presently, there are still predominant emission associated with plastics combustion which much attentions are given with regards to greenhouse gas emission.

Other types of municipal solid waste follow these path.

Much consideration will be given to the municipal solid waste that frequently produces less quantity of effluent during combustion to mix with the municipal solid waste that frequently produce higher or more toxic emissions. This reason is to bring down the quantity of emission from the municipal solid waste with higher emission and sometimes toxic but have a higher calorific value.

CHAPTER FOUR

4.0 **RESULTS AND DISCUSSION**

 Table 4.1: Volume of municipal solid waste (MSW) generated from Uyo metropolis

 measured in Kilogram

MSW	As at November/December 2014
Volume	72,000000

Source: AkwaIbom State Environmental and Waste Management Agency.

Table 4.2Volume of municipal solid waste disposed in Uyo metropolis in
kilogram for November/December 2014

MSW	Per year	
Volume	3600000	

Source: AkwaIbom State Environmental and Waste Management Agency.

Sample of certain quantity of MSW was measured on daily basis and sorted in order to know the main components of MSW in Uyo metropolis. From the research, the main components of the MSW in Uyo are:

- (1) Organic
- (2) Paper-Carton
- (3) Glass
- (4) Plastics
- (5) Iron and metal packaging
- (6) Textiles, wood, leather and elastics
- (7) Inert matter
- (8) Others.

Using the bomb calorimeter, the calorific value of the major components of MSW in Uyo were as follow:

Quantity of MSW generated in Uyo metropolis per year in tones = 72,000 Tonnes/year.

From the quantity measured on daily basis, the average percentage of the component present in municipal solid waste are as listed below:

Sample (100kg)	Organic		Paper-car	rton	Glass		Plastics		Total
Locations	Weight %/Kg	CV-MJ	Weight- %/Kg	CV-MJ	Weight- %/Kg	CV-MJ	Weight- %/ Kg	CV-MJ	Weight %/Kg
1	66.3	18.00	18.40	17.00	1.30	0.00	5.20	40.01	91.20
2	66.5	18.11	18.40	17.00	1.30	0.00	4.20	40.20	90.60
3	66.4	18.21	18.10	17.01	1.40	0.00	4.60	40.00	90.50
4	66.3	17.98	18.30	16.99	1.50	0.00	6.00	40.00	92.10
5	66.3	18.00	18.40	17.20	1.20	0.00	5.40	39.98	91.30
6	66.2	17.97	18.50	17.30	1.10	0.00	5.20	39.96	91.00
7	66.4	17.99	18.60	16.80	1.30	0.00	4.00	39.00	90.30
8	63.3	18.00	18.40	16.70	1.30	0.00	4.80	41.09	87.80
9	66.2	18.00	18.40	17.00	1.20	0.00	6.50	40.00	92.30
10	66.2	18.11	18.30	17.00	1.30	0.00	6.10	40.00	91.90
Total	663.1	180.26	184.8	170.00	12.90	0.00	52.00	400.24	
Mean	66.30	18.02	18.40	17.00	1.30	0.00	5.20	40.02	

Table 4.3Showing percentage composition per kilogram and calorificvalue(CV) of each component in a location

Sample (100kg)	Iron and	metal	Textiles/ Leather	wood &	Inert mat	ter	Others		Total
Locations	Weight- %/Kg	CV-MJ	Weight %/Kg	CV-MJ	Weight- %/Kg	CV-MJ	Weight- %/Kg	CV-MJ	Weight- %/kg
1	2.00	0.00	4.30	32.00	0.50	0.00	2.00	18.00	8.80
2	2.90	0.00	3.50	32.20	0.40	0.00	2.60	18.00	9.40
3	3.00	0.00	5.10	31.90	0.20	0.00	1.20	18.60	9.50
4	1.00	0.00	3.10	31.80	1.30	0.00	2.50	18.40	7.90
5	0.10	0.00	6.40	32.10	1.30	0.00	0.90	17.40	8.70
6	1.10	0.00	7.10	32.20	0.10	0.00	0.70	17.60	9.00
7	1.10	0.00	3.90	31.80	0.20	0.00	4.50	18.01	9.70
8	8.90	0.00	0.10	32.01	0.10	0.00	0.10	17.99	9.20
9	0.10	0.00	6.50	32.00	0.80	0.00	0.30	18.00	7.70
10	0.60	0.00	7.20	31.99	0.10	0.00	0.20	18.00	8.10
Total	20.07	0.00	47.20	319.80	5.00	0.00	19.00	180.00	
Mean	2.10	0.00	4.30	32.00	0.5	0.00	1.90	18.00	

Table 4.3Showing percentage composition per kilogram and calorificvalue(CV) of each component in a location continued

S/N	Component	% per Kg
1	Organic	66.3
2	Paper-Carton	18.4
3	Plastics	5.2
4	Glass	1.3
5	Iron and metal packaging	2.1
6	Textiles, Wood, Leather and Elastics	4.3
7	Others	1.9
8	Inert matter	0.5
	Total	100

Table 4.4Average Percentage of waste per kilogram of MSW

S/N	Component	Calorific Value (MJ/Kg) dry matter
1	Organic	18
2	Paper-Carton	17
3	Glass	0
4	Plastics	40
5	Iron and metal packaging	0
6	Textiles, Wood, Leather and Elastics	32
7	Inert matter	0
8	Others	18

Table 4.5 Calorific value of different waste - Experimental Results

Ι	x _i	\overline{x}	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	18.71	17.90	0.81	0.6561
2	17.72	17.90	-0.18	0.0324
3	17.81	17.90	-0.09	0.0081
4	18.29	17.90	0.39	0.1521
5	17.48	17.90	-0.42	0.1764
6	17.43	17.90	-0.47	0.2209
7	17.38	17.90	-0.52	0.2704
8	16.95	17.90	-0.95	0.9025
9	18.66	17.90	0.76	0.5776
10	18.47	17.90	0.57	0.3249
11	17.80	17.90	-0.10	0.0100
12	18.86	17.90	0.96	0.9216
13	17.31	17.90	-0.59	0.3481
14	18.18	17.90	0.28	0.0784
15	17.48	17.90	-0.42	0.1764
16	18.66	17.90	0.76	0.5776
17	17.14	17.90	-0.76	0.5776
18	18.21	17.90	0.31	0.0961
19	18.69	17.90	0.79	0.6241
20	18.42	17.90	0.52	0.2704
21	18.90	17.90	-0.30	0.0900

Table 4.6:Showing Experimental Results for OW/PCW at 9:1 mix

34 35	17.51 17.26	17.90	-0.39	0.1521 0.4096
32 33	18.48 17.09	17.90 17.90	0.58 -0.81	0.3364 0.6561
31	18.24	17.90	0.34	0.1156
30	17.99	17.90	0.09	0.0081
29	17.02	17.90	-0.88	0.7744
28	18.46	17.90	0.56	0.3136
27	18.41	17.90	0.51	0.2601
26	17.06	17.90	-0.84	0.7056
25	16.98	17.90	-0.92	0.8464
24	18.23	17.90	0.33	0.1089
23	18.89	17.90	0.99	0.9804
22	17.46	17.90	-0.44	0.1936

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	31.15	30.5	0.65	0.4325
2	30.58	30.5	0.08	0.1640
3	30.25	30.5	-0.25	0.0625
4	30.68	30.5	0.18	0.0324
5	30.24	30.5	-0.26	0.0676
6	29.65	30.5	-0.85	0.7225
7	31.41	30.5	0.91	0.8281
8	30.63	30.5	-0.87	0.7569
9	31.46	30.5	0.96	0.9216
10	29.82	30.5	-0.68	0.4624
11	30.88	30.5	0.38	0.1444
12	31.30	30.5	0.80	0.6400
13	29.59	30.5	-0.91	0.8281
14	29.95	30.5	-0.53	0.2909
15	31.24	30.5	0.74	0.5476
16	31.20	30.5	0.70	0.4900
17	30.12	30.5	-0.38	0.1644
18	30.31	30.5	-0.19	0.0361
19	31.11	30.5	0.61	0.3721
20	29.71	30.5	-0.79	0.6241
21	30.85	30.5	0.35	0.1225
22	31.47	30.5	0.97	0.9409
23	30.39	30.5	-0.11	0.0121

Table 4.7:Showing Experimental Results for TLWW/PCW at 9:1 mix

24	31.33	30.5	0.83	0.6889
25	29.81	30.5	-0.67	0.4761
26	31.07	30.5	0.57	0.3249
27	31.05	30.5	0.55	0.3025
28	31.21	30.5	0.71	0.5041
29	30.14	30.5	-0.36	0.1296
30	30.51	30.5	0.01	0.0001
31	29.55	30.5	-0.95	0.9025
32	30.16	30.5	-0.34	0.1156
33	29.58	30.5	-0.92	0.8464
34	30.75	30.5	0.25	0.0625
35	31.08	30.5	0.58	0.3364
	1069.25			14.1557

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	17.72	17.6	0.12	0.0144
2	17.48	17.6	-0.12	0.0144
3	17.76	17.6	0.16	0.02.56
4	18.29	17.6	0.69	0.4761
5	17.73	17.6	0.13	0.0169
6	17.32	17.6	-0.28	0.0784
7	17.56	17.6	-0.04	0.0016
8	17.43	17.6	-0.17	0.0289
9	16.89	17.6	-0.71	0.5041
10	18.03	17.6	0.43	0.1849
11	18.43	17.6	0.83	0.6889
12	17.57	17.6	-0.03	0.0009
13	17.33	17.6	-0.27	0.0729
14	16.61	17.6	-0.56	0.3136
15	18.59	17.6	0.98	0.9604
16	17.22	17.6	-0.38	0.1444
17	17.58	17.6	-0.02	0.0004
18	17.35	17.6	-0.25	0.0625
19	17.53	17.6	-0.07	0.0049
20	18.23	17.6	0.63	0.3969
21	16.76	17.6	-0.84	0.7056
22	18.56	17.6	0.96	0.9216
23	16.88	17.6	-0.72	0.5184

Table 4.8:Showing Experimental Results for OW/PCW at 6:4 mix

24 17.44 17.6 -0.16 0.0256 25 18.47 17.6 0.87 0.7569 26 16.84 17.6 -0.76 0.5776 27 18.57 17.6 0.97 0.9409 28 17.22 17.6 -0.38 0.1444 29 16.68 17.6 -0.92 0.8464 30 18.50 17.6 0.90 0.8100 31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.12 0.0144 $\overline{016.23}$ 11.4322 11.4322						
26 16.84 17.6 -0.76 0.5776 27 18.57 17.6 0.97 0.9409 28 17.22 17.6 -0.38 0.1444 29 16.68 17.6 -0.92 0.8464 30 18.50 17.6 0.90 0.8100 31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	24	17.44	17.6	-0.16	0.0256	
27 18.57 17.6 0.97 0.9409 28 17.22 17.6 -0.38 0.1444 29 16.68 17.6 -0.92 0.8464 30 18.50 17.6 0.90 0.8100 31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	25	18.47	17.6	0.87	0.7569	
28 17.22 17.6 -0.38 0.1444 29 16.68 17.6 -0.92 0.8464 30 18.50 17.6 0.90 0.8100 31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	26	16.84	17.6	-0.76	0.5776	
2916.6817.6-0.920.84643018.5017.60.900.81003116.9017.6-0.700.49003218.4017.60.800.64003317.4217.6-0.180.03243417.4717.6-0.130.01693517.4817.6-0.120.0144	27	18.57	17.6	0.97	0.9409	
30 18.50 17.6 0.90 0.8100 31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	28	17.22	17.6	-0.38	0.1444	
31 16.90 17.6 -0.70 0.4900 32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	29	16.68	17.6	-0.92	0.8464	
32 18.40 17.6 0.80 0.6400 33 17.42 17.6 -0.18 0.0324 34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	30	18.50	17.6	0.90	0.8100	
3317.4217.6-0.180.03243417.4717.6-0.130.01693517.4817.6-0.120.0144	31	16.90	17.6	-0.70	0.4900	
34 17.47 17.6 -0.13 0.0169 35 17.48 17.6 -0.12 0.0144	32	18.40	17.6	0.80	0.6400	
35 17.48 17.6 -0.12 0.0144	33	17.42	17.6	-0.18	0.0324	
	34	17.47	17.6	-0.13	0.0169	
616.23 11.4322	35	17.48	17.6	-0.12	0.0144	
		616.23			11.4322	

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	26.04	26.0	0.04	0.0016
2	26.44	26.0	0.44	0.1936
3	25.15	26.0	-0.85	0.7225
4	25.50	26.0	-0.50	0.2500
5	26.47	26.0	0.47	0.2209
6	26.83	26.0	0.83	0.6889
7	25.73	26.0	-0.27	0.0729
8	25.79	26.0	-0.21	0.0441
9	25.77	26.0	0.23	0.0529
10	26.93	26.0	0.93	0.8649
11	25.41	26.0	-0.59	0.3481
12	25.76	26.0	-0.24	0.0576
13	26.04	26.0	0.04	0.0016
14	26.76	26.0	0.76	0.5776
15	25.11	26.0	-0.89	0.7921
16	26.73	26.0	0.73	0.5329
17	26.91	26.0	0.91	0.8281
18	25.69	26.0	-0.31	0.0961
19	25.32	26.0	-0.68	0.4624
20	25.16	26.0	-0.85	0.7225
21	26.94	26.0	0.94	0.8836
22	25.27	26.0	-0.73	0.5329
23	26.34	26.0	0.34	0.1156

Table 4.9:Showing Experimental Results for TLWW/PCW at 6:4 mix

24	26.03	26.0	0.03	0.0009
25	25.32	26.0	-0.68	0.4624
26	26.39	26.0	0.39	0.1521
27	26.63	26.0	0.63	0.3969
28	25.14	26.0	-0.86	0.7396
29	26.68	26.0	0.68	0.4624
30	25.68	26.0	-0.32	0.1024
31	26.53	26.0	0.53	0.2809
32	25.70	26.0	-0.30	0.0900
33	25.59	26.0	-0.41	0.1681
34	26.19	26.0	0.19	0.0361
35	26.44	26.0	0.44	0.1936
	910.41			12.0332

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	32.11	31.2	0.91	0.8281
2	30.46	31.2	-0.74	0.5476
3	31.86	31.2	0.66	0.4356
4	30.22	31.2	-0.98	0.9604
5	30.85	31.2	-0.35	0.1225
6	31.55	31.2	-0.65	0.4225
7	31.45	31.2	0.25	0.0625
8	31.85	31.2	0.65	0.4225
9	31.59	31.2	0.39	0.1521
10	30.86	31.2	-0.34	0.1156
11	30.66	31.2	-0.54	0.2916
12	31.98	31.2	0.78	0.6084
13	31.73	31.2	0.53	0.2809
14	30.39	31.2	-0.81	0.6561
15	30.70	31.2	-0.50	0.2500
16	31.77	31.2	0.57	0.3249
17	31.86	31.2	0.66	0.4356
18	30.59	31.2	-0.61	0.3721
19	31.10	31.2	-0.10	0.0100
20	30.97	31.2	-0.23	0.0529
21	30.71	31.2	-0.49	0.2401
22	31.60	31.2	0.40	0.1600
23	31.95	31.2	0.75	0.5625

Table 4.10:Showing Experimental Results for PW/OW at 6:4 mix

24	30.83	31.2	-0.37	0.1369
25	30.24	31.2	-0.96	0.9216
26	32.09	31.2	0.89	0.7921
27	31.90	31.2	0.70	0.4900
28	30.23	31.2	-0.97	0.9409
29	31.84	31.2	-0.64	0.4096
30	31.50	31.2	0.30	0.0900
31	30.64	31.2	-0.56	0.3136
32	30.76	31.2	-0.44	0.1936
33	32.02	31.2	-0.82	0.6724
34	31.59	31.2	0.39	0.1521
35	30.26	31.2	-0.94	0.8836
	1092.71			14.3109

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	31.38	30.6	0.78	0.6084
2	31.00	30.6	0.40	0.1600
3	31.59	30.6	-0.99	0.9801
4	29.73	30.6	-0.87	0.7569
5	31.07	30.6	0.47	0.2209
6	30.61	30.6	-0.99	0.7225
7	30.01	30.6	-0.59	0.3481
8	30.71	30.6	0.11	0.0121
9	30.90	30.6	0.30	0.0900
10	29.73	30.6	-0.87	0.7569
11	31.23	30.6	0.63	0.3969
12	30.39	30.6	-0.21	0.0441
13	30.61	30.6	0.01	0.0001
14	31.49	30.6	0.89	0.7921
15	30.18	30.6	-0.42	0.1764
16	30.51	30.6	-0.09	0.0081
17	31.36	30.6	0.76	0.5476
18	30.48	30.6	-0.12	0.0144
19	30.10	30.6	-0.50	0.2500
20	30.66	30.6	0.06	0.0036
21	29.92	30.6	-0.68	0.6400
22	29.79	30.6	-0.81	0.6241
23	30.89	30.6	0.29	0.0841

 Table 4.11:
 Showing Experimental Results for TLWW/OW at 9:1 mix

24	30.20	30.6	-0.40	0.1600
25	30.07	30.6	-0.53	0.2809
26	31.28	30.6	0.68	0.4624
27	29.69	30.6	-0.91	0.8281
28	31.55	30.6	0.95	0.9025
29	30.63	30.6	0.03	0.0009
30	31.21	30.6	-0.39	0.1521
31	30.78	30.6	0.18	0.0324
32	31.17	30.6	0.57	0.3249
33	29.96	30.6	-0.64	0.4096
34	31.36	30.6	0.76	0.5776
35	29.98	30.6	-0.62	0.3844
	1072.22			12.8952

Ι	x _i	\bar{x}	x_i - \overline{x}	$(x_i - \bar{x})^2$
1	37.23	36.8	0.42	0.1764
2	36.64	36.8	-0.16	0.0256
3	36.08	36.8	0.88	0.7744
4	37.47	36.8	0.67	0.4489
5	36.30	36.8	-0.50	0.2500
6	36.17	36.8	-0.63	0.3969
7	36.98	36.8	0.18	0.0324
8	36.23	36.8	0.95	0.9025
9	36.23	36.8	-0.57	0.3249
10	36.73	36.8	-0.07	0.0049
11	37.36	36.8	0.56	0.3136
12	37.63	36.8	0.83	0.6889
13	36.54	36.8	-0.26	0.0676
14	36.25	36.8	-0.55	0.3025
15	36.05	36.8	-0.75	0.5625
16	37.13	36.8	0.33	0.1089
17	37.26	36.8	0.46	0.2116
18	36.53	36.8	-0.27	0.0729
19	36.12	36.8	-0.68	0.4624
20	36.24	36.8	0.56	0.3136
21	36.07	36.8	0.73	0.5329
22	36.12	36.8	-0.68	0.4624
23	37.25	36.8	0.45	0.2025

Table 4.12:Showing Experimental Results for PW/TLWW at 6:4 mix

24	36.11	36.8	0.69	0.4761
25	37.68	36.8	-0.88	0.7744
26	36.32	36.8	-0.48	0.2304
27	36.18	36.8	-0.62	0.3844
28	37.23	36.8	0.43	0.1849
29	37.47	36.8	0.67	0.4489
30	36.27	36.8	-0.53	0.2809
31	37.65	36.8	0.85	0.7225
32	37.07	36.8	0.27	0.0729
33	36.57	36.8	-0.23	0.0529
34	37.09	36.8	0.29	0.0841
35	36.16	36.8	-0.64	0.4096
	1284.92			11.7612

i	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	26.49	26.4	0.09	0.0081
2	25.63	26.4	-0.77	0.5929
3	26.86	26.4	0.46	0.2116
4	25.74	26.4	-0.66	0.4356
5	26.77	26.4	0.37	0.1369
6	25.90	26.4	-0.50	0.2500
7	26.18	26.4	-0.22	0.0484
8	26.48	26.4	0.08	0.0064
9	26.77	26.4	0.37	0.1369
10	25.73	26.4	-0.67	0.4489
11	27.27	26.4	0.87	0.7569
12	25.82	26.4	-0.58	0.3364
13	26.30	26.4	-0.30	0.0900
14	27.36	26.4	0.96	0.9216
15	26.08	26.4	-0.32	0.1024
16	26.28	26.4	-0.12	0.0144
17	25.77	26.4	-0.63	0.3969
18	27.14	26.4	0.74	0.5476
19	27.03	26.4	0.63	0.3969
20	26.39	26.4	-0.01	0.0001
21	25.90	26.4	-0.50	0.2500
22	25.88	26.4	-0.52	0.2704
23	26.21	26.4	-0.19	0.0361

 Table 4.13:
 Showing Experimental Results for TLWW/OW at 6:4 mix

35	26.44 899.09	26.4	0.04	0.0016
34	25.54	26.4	-0.86	0.7396
33	26.34	26.4	-0.06	0.0036
32	26.98	26.4	0.58	0.3364
31	26.12	26.4	-0.28	0.0784
30	27.35	26.4	0.95	0.9025
29	26.84	26.4	0.44	0.1936
28	25.44	26.4	-0.96	0.9216
27	25.89	26.4	-0.51	0.2601
26	26.27	26.4	-0.13	0.0169
25	26.90	26.4	0.50	0.2500
24	25.89	26.4	-0.51	0.2601

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	31.71	30.8	0.91	0.8281
2	30.06	30.8	-0.74	0.5476
3	30.14	30.8	-0.66	0.4356
4	31.78	30.8	0.98	0.9604
5	31.15	30.8	0.35	0.1225
6	30.15	30.8	-0.65	0.4225
7	30.71	30.8	-0.09	0.0081
8	30.05	30.8	0.25	0.0625
9	31.45	30.8	0.65	0.4225
10	30.41	30.8	-0.39	0.1521
11	30.46	30.8	-0.34	0.1156
12	30.96	30.8	0.16	0.0256
13	31.34	30.8	0.54	0.2916
14	31.61	30.8	0.81	0.6561
15	30.02	30.8	-0.78	0.6084
16	30.27	30.8	-0.53	0.2809
17	29.99	30.8	-0.81	0.6561
18	31.30	30.8	0.50	0.2500
19	30.23	30.8	-0.57	0.3249
20	31.46	30.8	0.66	0.4356
21	31.41	30.8	0.61	0.3721
22	30.90	30.8	0.10	0.0100

 Table 4.14:
 Showing Experimental Results for PW/PCW at 6:4 mix

23	30.57	30.8	-0.23	0.0529	—
24	30.69	30.8	-0.11	0.0121	
25	31.29	30.8	0.49	0.2401	
26	30.40	30.8	-0.40	0.1600	
27	31.55	30.8	0.75	0.5625	
28	30.62	30.8	-0.18	0.0324	
29	31.17	30.8	0.37	0.1369	
30	29.84	30.8	-0.96	0.9216	
31	31.69	30.8	0.89	0.7921	
32	30.10	30.8	-0.70	0.4900	
33	31.77	30.8	0.97	0.9409	
34	30.16	30.8	-0.64	0.4096	
35	31.10	30.8	0.30	0.0900	
	30.8431			12.8299	_

i	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	38.26	37.70	0.56	0.3136
2	38.48	37.70	0.78	0.6084
3	37.26	37.70	-0.44	0.1936
4	36.95	37.70	-0.75	0.5625
5	37.71	37.70	0.01	0.0001
6	36.84	37.70	-0.86	0.7396
7	37.13	37.70	-0.57	0.2800
8	38.38	37.70	0.68	0.4624
9	36.98	37.70	-0.72	0.5184
10	37.54	37.70	-0.16	0.0256
11	38.01	37.70	0.13	0.0961
12	37.79	37.70	0.09	0.0081
13	37.01	37.70	-0.69	0.4761
14	38.53	37.70	0.83	0.6889
15	37.43	37.70	-0.27	0.0729
16	37.50	37.70	-0.20	0.0400
17	38.62	37.70	0.92	0.8464
18	38.42	37.70	0.72	0.5184
19	36.94	37.70	-0.76	0.5776
20	37.84	37.70	0.14	0.0196
21	37.52	37.70	-0.18	0.0324
22	37.08	37.70	-0.62	0.3844
23	37.71	37.70	0.01	0.0001

 Table 4.15:
 Showing Experimental Results for PW/PCW at 9:1 mix

24	37.56	37.70	-0.14	0.0196
25	37.64	37.70	-0.06	0.0036
26	38.17	37.70	0.47	0.2209
27	36.83	37.70	-0.87	0.7569
28	37.34	37.70	-0.36	0.1296
29	37.51	37.70	-0.19	0.0361
30	38.21	37.70	0.51	0.2601
31	37.61	37.70	-0.09	0.0081
32	38.05	37.70	0.35	0.1225
33	36.83	37.70	-0.87	0.7569
34	37.30	37.70	-0.40	0.1600
35	37.99	37.70	0.29	0.0841
	1316.97			10.0685

Ι	x _i	\overline{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	39.34	39.20	0.14	0.0196
2	39.77	39.20	0.57	0.3249
3	39.09	39.20	-0.11	0.0121
4	38.49	39.20	-0.71	0.5041
5	39.90	39.20	0.70	0.4900
6	39.89	39.20	0.69	0.4761
7	38.54	39.20	-0.66	0.4356
8	38.62	39.20	-0.58	0.3364
9	39.48	39.20	-0.28	0.0784
10	38.98	39.20	-0.22	0.0484
11	39.31	39.20	0.11	0.0121
12	39.96	39.20	0.76	0.5776
13	39.10	39.20	-0.10	0.0100
14	39.85	39.20	0.65	0.4225
15	38.33	39.20	-0.87	0.7569
16	38.34	39.20	-0.86	0.7396
17	38.93	39.20	-0.27	0.0729
18	38.47	39.20	-0.73	0.5329
19	38.76	39.20	-0.44	0.1936
20	38.45	39.20	-0.75	0.5625
21	40.00	39.20	0.80	0.6400
22	38.44	39.20	-0.76	0.5776

 Table 4.16:
 Showing Experimental Results for PW/TLWW at 9:1 mix

23	39.06	39.20	-0.14	0.0196
24	39.64	39.20	0.44	0.1936
25	40.15	39.20	0.98	0.9025
26	38.50	39.20	-0.70	0.4900
27	39.65	39.20	0.45	0.2025
28	39.41	39.20	0.21	0.0441
29	39.31	39.20	0.11	0.0121
30	39.01	39.20	-0.19	0.0361
31	39.14	39.20	-0.06	0.0036
32	39.18	39.20	-0.03	0.0009
33	39.81	39.20	0.61	0.3721
34	39.31	39.20	0.11	0.0121
35	39.68	39.20	0.48	0.2304
	1371.89			10.3434

Ι	x _i	\overline{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	38.22	37.80	0.42	0.1764
2	38.24	37.80	0.44	0.1936
3	37.15	37.80	-0.65	0.4225
4	38.89	37.80	0.84	0.7056
5	37.34	37.80	-0.46	0.2116
6	37.02	37.80	-0.78	0.6084
7	37.40	37.80	-0.40	0.1600
8	38.58	37.80	0.78	0.6084
9	38.69	37.80	0.89	0.7921
10	37.09	37.80	-0.71	0.5041
11	38.50	37.80	0.70	0.4900
12	37.73	37.80	-0.07	0.0049
13	38.33	37.80	0.53	0.2809
14	37.25	37.80	-0.55	0.3025
15	36.91	37.80	-0.89	0.7921
16	37.87	37.80	0.07	0.0049
17	37.77	37.80	-0.03	0.0009
18	37.92	37.80	0.12	0.0144
19	38.33	37.80	0.53	0.2809
20	37.01	37.80	-0.79	0.6241
21	37.20	37.80	-0.60	0.3600
22	37.62	37.80	-0.18	0.0324

Table 4.17:Showing Experimental Results for PW/OW at 9:1 mix

23	38.26	37.80	0.46	0.2116	
24	38.43	37.80	0.63	0.3969	
25	37.27	37.80	-0.53	0.2809	
26	36.82	37.80	-0.98	0.9604	
27	38.09	37.80	0.29	0.0841	
28	36.99	37.80	-0.81	0.6561	
29	38.23	37.80	0.43	0.1849	
30	37.56	37.80	-0.24	0.0576	
31	37.29	37.80	-0.51	0.2601	
32	38.59	37.80	0.79	0.6241	
33	37.67	37.80	-0.13	0.0169	
34	38.39	37.80	0.59	0.3481	
35	37.58	37.80	-0.22	0.0484	
	1322.23			11.7008	

Ι	x_i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	34.47	34.5	-0.03	0.0009
2	34.06	34.5	-0.44	0.1936
3	34.01	34.5	-0.49	0.2401
4	35.03	34.5	0.53	0.2809
5	35.16	34.5	0.66	0.4356
6	34.53	34.5	0.03	0.0009
7	34.38	34.5	-0.12	0.0144
8	33.84	34.5	-0.66	0.4356
9	35.33	34.5	0.83	0.6889
10	34.58	34.5	-0.02	0.0004
11	34.32	34.5	-0.28	0.0784
12	35.50	34.5	0.90	0.8100
13	34.15	34.5	-0.35	0.1225
14	34.28	34.5	-0.22	0.0484
15	36.26	34.5	0.76	0.6776
16	35.43	34.5	0.93	0.8649
17	34.47	34.5	-0.03	0.0009
18	33.53	34.5	-0.97	0.9409
19	34.79	34.5	0.29	0.0841
20	34.45	34.5	-0.05	0.0025
21	34.10	34.5	0.40	0.1600
22	33.56	34.5	-0.94	0.8836

Table 4.18:Showing Experimental Results for PW/TLWW/PCW at 5;4;1 mix

24	33.69	34.5	0.81	0.6561	
25	35.22	34.5	0.72	0.5184	
26	35.26	34.5	0.76	0.5776	
27	34.06	34.5	-0.44	0.1936	
28	34.26	34.5	-0.24	0.0576	
29	33.66	34.5	-0.84	0.7056	
30	35.03	34.5	0.53	0.2809	
31	33.69	34.5	0.81	0.6561	
32	34.77	34.5	0.27	0.0729	
33	34.05	34.5	-0.45	0.2025	
34	33.89	34.5	-0.61	0.3721	
35	35.36	34.5	0.86	0.7396	
	1207.05			12.2825	

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})2$
1	33.82	34.60	-0.78	0.6084
2	34.19	34.60	-0.41	0.1681
3	33.92	34.60	-0.68	0.4624
4	35.10	34.60	0.50	0.2500
5	34.60	34.60	0.00	0.0000
6	34.69	34.60	0.09	0.0081
7	35.51	34.60	0.91	0.8281
8	33.66	34.60	-0.94	0.9400
9	35.23	34.60	0.63	0.3969
10	34.58	34.60	-0.02	0.0004
11	34.63	34.60	0.03	0.0009
12	34.31	34.60	-0.29	0.0841
13	33.76	34.60	-0.84	0.7056
14	34.64	34.60	0.04	0.0400
15	34.41	34.60	-0.19	0.0361
16	35.13	34.60	0.53	0.2809
17	33.67	34.60	-0.93	0.8649
18	35.02	34.60	0.42	0.1764
19	34.20	34.60	-0.40	0.1600
20	34.61	34.60	0.01	0.0001
21	35.58	34.60	-0.98	0.9604
22	35.46	34.60	0.86	0.7396

Table 4.19:Showing Experimental Results for PW/TLWW/OW at 5:4:1 mix

23	34.33	34.60	-0.27	0.0729
24	35.32	34.60	0.72	0.5184
25	34.06	34.60	-0.54	0.2916
26	34.34	34.60	-0.26	0.0676
27	34.68	34.60	0.08	0.0064
28	34.71	34.60	0.11	0.0121
29	33.87	34.60	-0.73	0.5329
30	34.92	34.60	0.32	0.1024
31	33.71	34.60	-0.89	0.7921
32	35.24	34.60	0.64	0.4096
33	34.51	34.60	-0.09	0.0081
34	25.09	34.60	0.49	0.2401
35	33.79	34.60	-0.81	0.6561
	1209			11.4217

Ι	x_i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	28.52	28.9	-0.38	0.1444
2	28.64	28.9	-0.26	0.0676
3	28.35	28.9	0.55	0.3025
4	29.78	28.9	0.88	0.7744
5	29.77	28.9	0.87	0.7569
6	29.68	28.9	-0.78	0.6084
7	28.32	28.9	-0.08	0.0064
8	29.11	28.9	0.21	0.0441
9	29.11	28.9	0.21	0.0441
10	29.04	28.9	0.14	0.0196
11	28.90	28.9	0.00	0.0000
12	28.74	28.9	-0.16	0.0256
13	28.35	28.9	-0.55	0.3025
14	29.66	28.9	0.76	0.5776
15	29.83	28.9	0.93	0.8649
16	28.00	28.9	-0.90	0.8100
17	28.75	28.9	-0.15	0.0225
18	28.00	28.9	0.00	0.0000
19	28.85	28.9	-0.05	0.0025
20	28.45	28.9	-0.45	0.2025
21	28.72	28.9	-0.18	0.0324
22	29.19	28.9	0.29	0.0841

Table 4.20:Showing Experimental Results for PW/OW/PCW at 5:4:1 mix

23	29.53	28.9	0.63	0.3969	
24	28.42	28.9	-0.48	0.2304	
25	28.88	28.9	-0.04	0.0016	
26	29.38	28.9	0.48	0.2304	
27	29.23	28.9	0.33	0.1089	
28	29.51	28.9	0.61	0.3721	
29	28.67	28.9	-0.23	0.0529	
30	28.47	28.9	-0.43	0.1849	
31	28.75	28.9	-0.15	0.0225	
32	29.01	28.9	0.11	0.0121	
33	28.53	28.9	-0.37	0.1369	
34	29.36	28.9	0.46	0.2116	
35	28.18	28.9	-0.72	0.5784	
	1012.16				

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})2$
1	25.68	24.9	0.78	0.6084
2	25.27	24.9	0.67	0.4489
3	24.23	24.9	-0.67	0.4489
4	24.83	24.9	-0.07	0.0049
5	24.12	24.9	-0.78	0.6084
6	25.14	24.9	0.24	0.0576
7	24.54	24.9	-0.36	0.1296
8	24.61	24.9	-0.29	0.0841
9	25.82	24.9	0.92	0.8464
10	25.08	24.9	0.18	0.0324
11	23.92	24.9	-0.98	0.9604
12	25.00	24.9	-0.35	0.1225
13	24.95	24.9	0.05	0.0025
14	25.33	24.9	0.43	0.1849
15	25.34	24.9	0.44	0.1936
16	23.96	24.9	-0.94	0.8836
17	24.27	24.9	-0.63	0.3969
18	25.10	24.9	0.20	0.0400
19	25.52	24.9	0.62	0.3844
20	24.91	24.9	0.01	0.0001
21	24.46	24.9	-0.44	0.1936
22	24.24	24.9	-0.66	0.4356

Table 4.21:Showing Experimental Results for TLWW/OW/PCW at 5:4:1 mix

23	25.21	24.9	0.31	0.0961	
	23.21	24.9			
24	25.53	24.9	0.63	0.3969	
25	24.61	24.9	-0.29	0.0841	
26	24.86	24.9	-0.04	0.1600	
27	24.26	24.9	-0.64	0.4096	
28	25.18	24.9	0.28	0.0784	
29	25.67	24.9	0.77	0.5929	
30	24.74	24.9	-0.16	0.0256	
31	24.08	24.9	-0.82	0.6724	
32	25.59	24.9	0.69	0.4761	
33	25.31	24.9	0.41	0.1681	
34	24.37	24.9	-0.53	0.2809	
35	24.04	24.9	-0.86	0.7396	
	870.06			11.2484	

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})2$
1	30.47	31.0	-0.53	0.2809
2	30.45	31.0	-0.55	0.3025
3	31.74	31.0	0.74	0.5476
4	31.52	31.0	0.52	0.2704
5	30.14	31.0	-0.86	0.7396
6	30.28	31.0	-0.72	0.5184
7	30.96	31.0	-0.04	0.0016
8	31.57	31.0	0.57	0.3249
9	31.22	31.0	0.22	0.0484
10	31.82	31.0	0.82	0.6724
11	31.28	31.0	0.28	0.0784
12	30.26	31.0	-0.74	0.5476
13	31.74	31.0	0.74	0.5476
14	31.76	31.0	0.76	0.5776
15	31.23	31.0	0.23	0.0529
16	31.09	31.0	0.09	0.0081
17	30.67	31.0	-0.33	0.1089
18	30.16	31.0	-0.84	0.7056
19	30.02	31.0	-0.98	0.9604
20	31.89	31.0	0.89	0.7921
21	31.22	31.0	0.22	0.0484
22	30.14	31.0	-0.86	0.7396

Table 4.22:Showing Experimental Results for PW/TLWW/OW at 4:3:3 mix

23	30.03	31.0	-0.97	0.9409
24	30.98	31.0	-0.02	0.0004
25	31.04	31.0	0.04	0.0016
26	31.88	31.0	0.88	0.7744
27	31.27	31.0	0.27	0.0729
28	31.58	31.0	0.58	0.3364
29	30.37	31.0	-0.63	0.3969
30	30.02	31.0	-0.80	0.6400
31	30.60	31.0	-0.40	0.1600
32	31.77	31.0	0.77	0.5929
33	31.27	31.0	0.27	0.0729
34	31.60	31.0	0.60	0.3600
35	30.37	31.0	-0.63	0.3969
	1084.59			13.5901

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	27.38	26.5	0.88	0.7744
2	25.85	26.5	-0.65	0.4225
3	25.86	26.5	-0.64	0.4096
4	26.55	26.5	0.05	0.0025
5	27.06	26.5	0.56	0.3136
6	25.51	26.5	-0.99	0.9801
7	26.27	26.5	-0.23	0.0529
8	27.16	26.5	0.66	0.4356
9	26.54	26.5	-0.04	0.0016
10	26.50	26.5	0.00	0.0000
11	26.50	26.5	0.00	0.0000
12	26.46	26.5	-0.04	0.0016
13	25.62	26.5	-0.88	0.7744
14	27.08	26.5	0.58	0.3364
15	27.27	26.5	0.77	0.5929
16	26.67	26.5	0.17	0.0289
17	26.18	26.5	-0.32	0.1024
18	25.95	26.5	-0.55	0.3025
19	26.26	26.5	-0.24	0.0576
20	26.64	26.5	0.14	0.0196
21	27.18	26.5	0.68	0.4624
22	26.29	26.5	-0.21	0.0441

Table 4.23:Showing Experimental Results for PW/OW/PCW at 4:3:3 mix

23 26.88 26.5 0.38 0.1444 24 27.18 26.5 0.68 0.4624	
24 27.18 26.5 0.68 0.4624	
25 26.42 26.5 -0.08 0.0064	
26 25.95 26.5 -0.55 0.3025	
27 26.50 26.5 0.00 0.0000	
28 26.20 26.5 -0.30 0.0900	
29 27.10 26.5 0.60 0.3600	
30 27.14 26.5 0.64 0.4096	
31 26.33 26.5 -0.17 0.0289	
32 25.89 26.5 -0.61 0.3721	
33 25.75 26.5 -0.75 0.5625	
34 27.06 26.5 0.56 0.3136	
35 27.08 26.5 0.58 0.3364	
928.26 9.5017	

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})^2$
1	22.32	23.30	-0.98	0.9604
2	23.54	23.30	0.24	0.0576
3	24.10	23.30	0.80	0.6400
4	23.01	23.30	-0.29	0.0841
5	22.70	23.30	-0.60	0.3600
6	22.68	23.30	-0.62	0.3844
7	23.81	23.30	0.51	0.2601
8	23.75	23.30	0.45	0.2025
9	23.31	23.30	0.01	0.0001
10	23.78	23.30	0.48	0.2304
11	22.34	23.30	-0.96	0.9216
12	24.22	23.30	0.92	0.8464
13	22.52	23.30	-0.78	0.6084
14	24.05	23.30	0.75	0.5625
15	23.07	23.30	-0.23	0.0529
16	22.53	23.30	-0.77	0.5929
17	23.27	23.30	-0.03	0.0009
18	24.02	23.30	0.72	0.5184
19	24.15	23.30	0.85	0.7225
20	22.63	23.30	-0.67	0.4489
21	23.15	23.30	-0.15	0.0225
22	23.71	23.30	0.41	0.1681

Table 4.24:Showing Experimental Results for TLWW/OW/PCW at 4:3:3 mix

23	23.69	23.30	0.39	0.1521
24	22.68	23.30	-0.62	0.3844
25	24.12	23.30	0.82	0.6724
26	22.73	23.30	-0.57	0.3249
27	23.98	23.30	0.68	0.4624
28	22.42	23.30	-0.88	0.7744
29	23.26	23.30	-0.04	0.0016
30	24.17	23.30	0.87	0.7569
31	22.31	23.30	-0.99	0.9801
32	24.21	23.30	0.91	0.8281
33	23.05	23.30	-0.25	0.0625
34	23.45	23.30	0.15	0.0225
35	23.66	23.30	0.36	0.1296
	816.39			13.6098

Ι	x _i	\bar{x}	x_i - \bar{x}	$(x_i - \bar{x})2$
1	27.09	26.50	0.59	0.3481
2	26.69	26.50	0.19	0.0361
3	25.67	26.50	-0.83	0.6889
4	27.01	26.50	0.51	0.2601
5	27.05	26.50	0.55	0.3025
6	25.70	26.50	-0.80	0.6400
7	25.80	26.50	-0.70	0.4900
8	27.08	26.50	-0.58	0.3364
9	27.44	26.50	0.94	0.8836
10	26.84	26.50	0.34	0.1156
11	26.40	26.50	-0.10	0.0100
12	25.82	26.50	-0.68	0.4624
13	26.00	26.50	-0.50	0.2500
14	26.15	26.50	-0.35	0.1225
15	26.97	26.50	0.47	0.2209
16	27.37	26.50	0.87	0.7569
17	25.54	26.50	0.96	0.9216
18	25.97	26.50	-0.53	0.2809
19	25.66	26.50	-0.84	0.7056
20	27.41	26.50	0.91	0.8281
21	26.93	26.50	0.43	0.1859
22	26.75	26.50	-0.25	0.0625

 Table 4.25 :
 Showing Experimental Results for PW/TLWW/PCW at 4:3:3 mix

23 26.72 26.50 0.22 0.0484 24 25.71 26.50 -0.79 0.6241 25 26.45 26.50 -0.05 0.0025 26 26.64 26.50 0.14 0.0196 27 27.50 26.50 0.50 0.2500 28 26.24 26.50 -0.26 0.0676 29 25.98 26.50 -0.52 0.2704 30 26.35 26.50 -0.15 0.0225 31 26.98 26.50 0.48 0.2304 32 26.86 26.50 -0.46 0.2116 34 25.91 26.50 -0.59 0.3481 35 27.39 26.50 0.89 0.7921 928.11 11.6745					
25 26.45 26.50 -0.05 0.0025 26 26.64 26.50 0.14 0.0196 27 27.50 26.50 0.50 0.2500 28 26.24 26.50 -0.26 0.0676 29 25.98 26.50 -0.52 0.2704 30 26.35 26.50 -0.15 0.0225 31 26.98 26.50 0.48 0.2304 32 26.86 26.50 0.36 0.1296 33 26.04 26.50 -0.46 0.2116 34 25.91 26.50 0.89 0.7921	23	26.72	26.50	0.22	0.0484
2626.6426.500.140.01962727.5026.500.500.25002826.2426.50-0.260.06762925.9826.50-0.520.27043026.3526.50-0.150.02253126.9826.500.480.23043226.8626.500.360.12963326.0426.50-0.460.21163425.9126.500.890.7921	24	25.71	26.50	-0.79	0.6241
27 27.50 26.50 0.50 0.2500 28 26.24 26.50 -0.26 0.0676 29 25.98 26.50 -0.52 0.2704 30 26.35 26.50 -0.15 0.0225 31 26.98 26.50 0.48 0.2304 32 26.86 26.50 0.36 0.1296 33 26.04 26.50 -0.46 0.2116 34 25.91 26.50 -0.59 0.3481 35 27.39 26.50 0.89 0.7921	25	26.45	26.50	-0.05	0.0025
28 26.24 26.50 -0.26 0.0676 29 25.98 26.50 -0.52 0.2704 30 26.35 26.50 -0.15 0.0225 31 26.98 26.50 0.48 0.2304 32 26.86 26.50 0.36 0.1296 33 26.04 26.50 -0.46 0.2116 34 25.91 26.50 0.89 0.7921	26	26.64	26.50	0.14	0.0196
29 25.98 26.50 -0.52 0.2704 30 26.35 26.50 -0.15 0.0225 31 26.98 26.50 0.48 0.2304 32 26.86 26.50 0.36 0.1296 33 26.04 26.50 -0.46 0.2116 34 25.91 26.50 -0.59 0.3481 35 27.39 26.50 0.89 0.7921	27	27.50	26.50	0.50	0.2500
3026.3526.50-0.150.02253126.9826.500.480.23043226.8626.500.360.12963326.0426.50-0.460.21163425.9126.50-0.590.34813527.3926.500.890.7921	28	26.24	26.50	-0.26	0.0676
3126.9826.500.480.23043226.8626.500.360.12963326.0426.50-0.460.21163425.9126.50-0.590.34813527.3926.500.890.7921	29	25.98	26.50	-0.52	0.2704
32 26.86 26.50 0.36 0.1296 33 26.04 26.50 -0.46 0.2116 34 25.91 26.50 -0.59 0.3481 35 27.39 26.50 0.89 0.7921	30	26.35	26.50	-0.15	0.0225
3326.0426.50-0.460.21163425.9126.50-0.590.34813527.3926.500.890.7921	31	26.98	26.50	0.48	0.2304
3425.9126.50-0.590.34813527.3926.500.890.7921	32	26.86	26.50	0.36	0.1296
35 27.39 26.50 0.89 0.7921	33	26.04	26.50	-0.46	0.2116
	34	25.91	26.50	-0.59	0.3481
928.11 11.6745	35	27.39	26.50	0.89	0.7921
		928.11			11.6745

4.2 STANDARD DEVIATION USING ANOVA AT $\alpha_{0.05}$

In the statistical analysis, two major methods of calculating standard deviation are involved; The T- Distribution and the central limit theorem. For this esearch, T-Distribution is applied in which case the research if any other researcher is carrying out the experiment on these, may not have the patient to generate much results as it is applicable in this research. Which means, in a few sample results, the outcome of the standard deviation will not have much significance difference.

In determining this standard deviation using the T- Distribution method, five selected results are picked and the mean determined, $\bar{x} = \frac{\sum x_i}{n}$, $\sum (x_i - \bar{x})^2$, S^2 also determined. Then $\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025} \frac{S}{\sqrt{n}}$ $(Z\alpha_{/2} = Z_{0.05/2} = Z_{0.025})$

 $Z_{0.025} = 1.96$ which is standard) are evaluated as shown below. For T-Distribution, n = 5

(i) For PW/OW at 9:1 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{188.89}{5} = 37.778 \rightarrow 37.80 \text{ MJ}$$

 $\sum (x_i - \bar{x})^2 = 2.0574$

 S^2 Which is sample variance \rightarrow

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n-1}$$

$$S^{2} = \frac{2.0574}{5-1} = \frac{2.0574}{4} = 0.5144$$
$$S = \sqrt{0.5144} = 0.71718$$
$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025} \frac{s}{\sqrt{n}}$$

 $(Z\alpha_{/2} = Z_{0.05/2} = Z_{0.025}$

 $Z_{0.025} = 1.96$ which is standard)

$$Z_{0.025} \frac{S}{\sqrt{n}} = 1.96(0.32) = 0. = 0.63$$

Therefore, the value for $PW/OW = 37.8 \pm 0.63$

Note: $\sqrt{5} = 2.2361$

- (ii) For TLWW/OW at 9:1 mix:
- $\bar{x} = \frac{\sum x_i}{n} = \frac{152.89}{5} = 30.578 \longrightarrow 30.60 \text{ MJ}$

$$\sum (x_i - \bar{x})^2 = 2.6565$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n-1}$$

 $S^2 = \frac{2.6565}{5-1} = \frac{2.6565}{4} = 0.6641$

$$S = \sqrt{0.6641} = 0.8149$$

 $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$

$$\frac{S}{\sqrt{n}}Z_{0.025}\frac{S}{\sqrt{n}} = 1.96(0.3645) = 0.71$$

Therefore, the value for TLWW/OW = 30.60 ± 0.71

Note: $\sqrt{5} = 2.2361$

(iii) For PW/PCW at 9:1 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{188.33}{5} = 37.70 \rightarrow 37.70 \text{ MJ}$$
$$\sum (x_i - \bar{x})^2 = 0.9742$$
$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n - 1}$$

$$S^{2} = \frac{0.9742}{5-1} = \frac{0.9742}{4} = 0.2436$$

$$S = \sqrt{0.2436} = 0.4935$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.02} \frac{S}{\sqrt{n}} = 1.96(0.2207) = 0.43$$

Therefore, the value for PW/PCW = 37.70 ± 0.43

Note:
$$\sqrt{5} = 2.2361$$

(iv) For TLWW/PCW at 9:1 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{152.43}{5} = 30.48 \rightarrow 30.50 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 1.6711$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n-1}$$

$$S^{2} = \frac{1.6711}{5-1} = \frac{1.6711}{4} = 0.417775$$

$$S = \sqrt{0.41778} = 0.6464$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.2890) = 0.57$$

Therefore, the value for TLWW/PCW = 30.50 ± 0.57

Note: $\sqrt{5} = 2.2361$

(v) For OW/PCW at 9:1 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{89.65}{5} = 17.93 \rightarrow 17.90 \text{ MJ}$$

 $\sum (x_i - \bar{x})^2 = 2.4069$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n - 1}$$

$$S^{2} = \frac{2.4069}{5 - 1} = \frac{2.4069}{4} = 0.6017$$

$$S = \sqrt{0.6017} = 0.7757$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.3469) = 0.68$$

Therefore, the value for $OW/PCW = 17.90 \pm 0.68$

Note:
$$\sqrt{5} = 2.2361$$

(vi) For PW/TLWW at 9:1 mix: $\bar{x} = \frac{\sum x_i}{n} = \frac{195.85}{5} = 39.17 \rightarrow 39.20 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 2.5296$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$ $S^2 = \frac{2.5296}{5-1} = \frac{2.5296}{4} = 0.6324$ $S = \sqrt{0.6324} = 0.7653$ $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ $\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.3556) = 0.70$

Therefore, the value for PW/TLww = 39.20 ± 0.70

Note: $\sqrt{5} = 2.2361$

(vii) For PW/PCW at 6:4 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{153.77}{5} = 30.80 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 0.2287$$

$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$$

$$S^2 = \frac{0.2287}{5-1} = \frac{0.2287}{4} = 0.0572$$

$$S = \sqrt{0.0572} = 0.23911$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.10693) = 0.21$$

Therefore, the value for $PW/PCW = 30.80 \pm 0.21$

Note:
$$\sqrt{5} = 2.2361$$

(viii) For PW/OW at 6:4 mix: $\bar{x} = \frac{\sum x_i}{n} = \frac{156.21}{5} = 31.24 \rightarrow 31.20 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.6583$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$ $S^2 = \frac{1.6583}{5-1} = \frac{1.6583}{4} = 0.4146$ $S = \sqrt{0.4146} = 0.6439$ $\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ $\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.2879) = 0.56$

Therefore, the value for $PW/OW = 31.20 \pm 0.56$

Note: $\sqrt{5} = 2.2361$

(ix) For PW/TLWW at 6:4 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{183.94}{5} = 36.79 \rightarrow 36.80 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 3.4238$$

$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$$

$$S^2 = \frac{3.4238}{5-1} = \frac{3.4238}{4} = 0.8559$$

$$S = \sqrt{0.8559} = 0.9252$$

$$\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.4137) = 0.81$$

Therefore, the value for $PW/TLWW = 36.80 \pm 0.81$

Note: $\sqrt{5} = 2.2361$

(x) For TLWW/OW at 6:4 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{131.87}{5} = 26.37 \rightarrow 26.4 \text{ MJ}$$

 $\sum (x_i - \bar{x})^2 = 1.0749$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n-1}$$

 $S^{2} = \frac{5.0749}{5-1} = \frac{1.0749}{4} = 0.2687$ $S = \sqrt{0.2687} = 0.5184$ $\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ S

$$\frac{5}{\sqrt{n}}Z_{0.025} = 1.96(0.2318) = 0.45$$

Therefore, the value for TLWW/OW = 26.40 ± 0.45

Note:
$$\sqrt{5} = 2.2361$$

(xi) For TLWW/PCW at 6:4 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{129.86}{5} = 26.97 \rightarrow 26.00 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 1.0142$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})}{n - 1}$$

$$S^{2} = \frac{1.0142}{5-1} = \frac{1.0142}{4} = 0.2534$$

$$S = \sqrt{0.2534} = 0.5035$$

$$\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.2252) = 0.44$$

Therefore, the value for TLWW/PCW = 26.00 ± 0.44

Note:
$$\sqrt{5} = 2.2361$$

$$\bar{x} = \frac{\sum x_i}{n} = \frac{88.01}{5} = 17.60 \rightarrow 17.60 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 0.8974$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})2}{n-1}$$

$$S^2 = \frac{0.8974}{5-1} = \frac{0.8974}{4} = 0.2244$$

$$S = \sqrt{0.2244} = 0.4736$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}}Z_{0.025} = 1.96(0.2118) = 0.42$$

Therefore, the value for $OW/PCW = 17.60 \pm 0.42$

Note: $\sqrt{5} = 2.2361$

(xiii) For PW/TLWW/OW at 5:4:1 mix:

 $\bar{x} = \frac{\sum x_i}{n} = \frac{173.12}{5} = 34.62 \rightarrow 34.60 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.5146$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$ $S^2 = \frac{1.5146}{5-1} = \frac{1.5146}{4} = 0.3787$ $S = \sqrt{0.3787} = 0.6153$ $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ $\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.2751) = 0.54$

Therefore, the value for $PW/TLWW/OW = 34.60 \pm 0.54$

Note: $\sqrt{5} = 2.2361$

(xiv) For PW/TLWW/PCW at 5:4:1 mix:

 $\bar{x} = \frac{\sum x_i}{n} = \frac{172.72}{5} = 34.54 \rightarrow 34.50 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.4442$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ $S^2 = \frac{1.4442}{5-1} = \frac{1.4442}{4} = 0.3611$ $S = \sqrt{0.3611} = 0.60087$ $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$

$$\frac{S}{\sqrt{n}}Z_{0.025} = 1.96(0.2118) = 0.53$$

Therefore, the value for PW/TLWW/PCW = 34.50 ± 0.53 Note: $\sqrt{5} = 2.2361$

(xv) For PW/OW/PCW at 5:4:1 mix:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{144.38}{5} = 28.88 \rightarrow 28.90 \text{ MJ}$$

$$\sum (x_i - \bar{x})^2 = 0.6519$$

$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$$

$$S^2 = \frac{0.6519}{5-1} = \frac{0.6519}{4} = 0.1629$$

$$S = \sqrt{0.1629} = 0.4037$$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.1805) = 0.35$$
Therefore, the value for PW/OW/PCW = 28.90 ± 0.35

Note: $\sqrt{5} = 2.2361$

(xvi) For TLWW/OW/PCW at 5:4:1 mix:

 $\bar{x} = \frac{\sum x_i}{n} = \frac{124.61}{5} = 24.92 \rightarrow 24.90 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 0.5396$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ $S^2 = \frac{0.5396}{5-1} = \frac{0.5396}{4} = 0.1349$ $S = \sqrt{0.1349} = 0.3673$

$$\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$$

$$\frac{S}{\sqrt{n}}Z_{0.025} = 1.96(0.1642) = 0.32$$

Therefore, the value for TLWW/OW/PCW = 24.90 ± 0.32

Note: $\sqrt{5} = 2.2361$ (xvii) For PW/TLWW/OW at 4:3:3 mix: $\bar{x} = \frac{\sum x_i}{n} = \frac{153.49}{5} = 30.69 \rightarrow 31.00 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 2.5145$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})2}{n-1}$ $S^2 = \frac{2.5145}{5-1} = \frac{2.5145}{4} = 0.6286$ $S = \sqrt{0.6286} = 0.7929$ $\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ $\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.3546) = 0.69$

Therefore, the value for $PW/TLWW/OW = 31.00 \pm 0.69$

Note: $\sqrt{5} = 2.2361$

(xviii) For PWTLWW/PCW at 4:3:3 mix:

 $\bar{x} = \frac{\sum x_i}{n} = \frac{132.68}{5} = 26.53 \rightarrow 26.50 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.6098$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ $S^2 = \frac{1.6098}{5-1} = \frac{1.6098}{4} = 0.4025$ $S = \sqrt{0.4025} = 0.6343$ $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$

$$\frac{S}{\sqrt{n}}Z_{0.025} = 1.96(0.2834) = 0.55$$

Therefore, the value for $PW/TLWW/PCW = 26.5 \pm 0.55$

Note: $\sqrt{5} = 2.2361$ (xix) For PW/OW/PCW at 4:3:3 mix: $\bar{x} = \frac{\sum x_i}{n} = \frac{132.67}{5} = 26.53 \rightarrow 26.50 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.1125$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})}{n-1}$ $S^2 = \frac{1.1125}{5-1} = \frac{1.1125}{4} = 0.2780$ $S = \sqrt{0.2780} = 0.5273$ $\bar{x} = Z_{0.025} \frac{S}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$ $\frac{S}{\sqrt{n}} Z_{0.025} = 1.96(0.2357) = 0.45$

Therefore, the value for $PW/OW/PCW = 26.50 \pm 0.45$

Note: $\sqrt{5} = 2.2361$

(xx) For TLWW/OW/PCW at 4:3:3 mix:

 $\bar{x} = \frac{\sum x_i}{n} = \frac{116.66}{5} = 23.33 \rightarrow 23.30 \text{ MJ}$ $\sum (x_i - \bar{x})^2 = 1.1418$ $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ $S^2 = \frac{1.1418}{5-1} = \frac{1.1418}{4} = 0.2855$ $S = \sqrt{0.2855} = 0.5342$ $\bar{x} = Z_{0.025} \frac{s}{\sqrt{n}} \sum \mu \le \bar{x} + Z_{0.025}$

$$\frac{S}{\sqrt{n}}Z_{0.025} = 1.96(0.2388) = 0.46$$

Therefore, the value for TLWW/OW/PCW = 23.30 ± 0.46

Note: $\sqrt{5} = 2.2361$

Combinations	9:1	8:2	7:3	6:4	5:5
Plastics/Textiles, leather & wood-	39.20	38.40	37.60	36.80	36.00
(PW/TLWW)					
Paper/Organic- (PW/OW)	37.80	35.60	33.40	31.20	29.00
Plastics/Paper-carton- (PW/PCW	37.70	35.40	33.10	30.80	28.50
Textiles, leather and wood/Organic-	30.60	29.20	27.80	26.40	25.00
(TLWW/OW)					
Textiles, leather & wood/Paper-	30.50	29.00	27.50	26.00	24.50
carton- TLWW/PCW)					
Organic/Paper-carton-(OW/PCW)	17.90	17.80	17.70	17.60	17.50

Table 4.26Experimental Results for the prepared ratios for two combinations

Combinations	5:4:1	5:3:2	4:3:3
Plastics/Textiles, wood & leather/Organic	34.60	33.20	31.00
Plastics/Textiles, wood &leather/Paper-carton	34.50	28.80	26.50
Plastics/organic/Paper-carton	28.90	28.80	26.50
Textiles/wood & leather/organic/paper-carton	24.90	24.80	23.30

Table 4.27 Experimental Results for the prepared ratios for three combinations

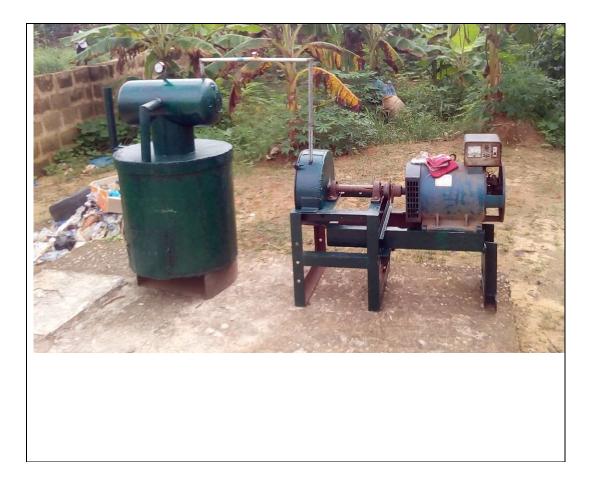


Plate 4.1: Municipal Solid Waste Power Plant

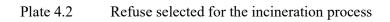


Plate 4.3 Refuse separation Process

Plate 4.4 Paper-carton waste selected for Incineration

Plate 4.5 Textiles, leather, wood and plastics waste selected for incineration

Plate 4.6 Some organic refuse selected for incineration

Plate 4.7 Showing some stages of incineration

Plate 4.8 Setting fire on the waste in the incinerator

Municipal solid waste mix	Optimum time (hr)	Qty of mix (kg)	Mix ratio	Water level in boiler(litres)	Vapour gas pressure (bar)	Air-fuel ratio	Power Output (Wh)
P/TWL	1:10	50	9:1	40	1.40	1:4	313.00
P/TWL	1:17	50	8:2	40	1.39	1:4	311.58
P/TWL	1:24	50	7:3	40	1.26	1:4	309.12
P/TWL	1:15	50	6:4	40	1.21	1:4	298.50
P/TWL	1:10	50	5:5	40	1.05	1:4	160.40
P/TWL/O	1:40	50	5:4:1	40	1.00	1:4	146.16
P/TWL/O	1:44	50	5:3:2	40	1.00	1:4	146.10
P/TWL/O	1:43	50	4:3:3	40	0.96	1:4	142.17

 Table 4.28:
 Data Generated from the Incineration Process

4.4 CALCULATION OF ELECTRICITY POTENTIAL OF MSW IN UYO METROPOLIS

SUMMED PRODUCT OF THE CALORIFIC VALUE

- (i) Organic component: $\frac{66.30}{100} \times 17.60 =$ 11.93
- $\frac{18.40}{100}$ X 17.00= 3.13 Paper-Carton: (ii) $1.30/_{100}$ X 0.00 = 0.00 (iii) Glass: $\frac{5.20}{100}$ X 40.00= 2.08 Plastics: (iv) $2.10/_{100}$ X 0.00 = 0.00(v) Iron and Metal Packaging: $4.30/_{100}$ X 32.00 = 1.38 Textiles, wood, Leather and Elastics: (vi) $0.50/_{100} \ge 0.00 = 0.00$ (vii) Inert Matter: 1.90/100 X18.00=0.34 (viii) Others: 18.86 Total

S/N	Component	% per Kg- (A) Caloric Value		(A) X (B)	
			(MJ/Kg)- (B)		
1	Organic	66.30	18.00	11.93	
2	Paper-Carton	18.40	17.00	3.13	
3	Glass	1.30	0.00	0.00	
4	Plastics	5.20	40.00	2.08	
5	Iron and metal packaging	2.10	0.00	0.00	
6	Textiles, Wood, Leather and Elastics	4.30	32.00	1.38	
7	Inert matter	0.50	0.00	0.00	
8	Others	1.90	18.00	0.34	

Table 4.29Summed product of the calorific values

The calorific value of MSW municipal solid waste in Uyo metropolis is given by; The summed product of the CV (MJ/Kg) of dry matter multiplied by the component of the MSW divided by the number of components that possess calorific value. Therefore, Let A= Components in the MSW.

B= Calorific value in (MJ/Kg) of dry matter

C= Components with calorific value=5

The summed product of the calorific value (MJ/Kg) of dry matter= $\sum (A)X(B)=18.86$

 $\Sigma(A)X(B)/C = 18.86/5 = 3.772 = 3.77MJ/Kg$

This value is multiplied by 1000 in order to have the MJ/Ton equivalent and then transformed to KWh/ton = 3772.00 MJ/ton.

Therefore, average CV of MSW generated in Uyo in KWh/ton = (Average calorific value of municipal solid waste $(MJ/ton)/3600 \times 1000$.

=3772/3600 X 1000 =1047.78KWh/ton.

Average CV of MSW generated in Uyo in KWh/ton = 1047.78Kwh/ton.

If we take the conventional thermal efficiency of 40%. The specific power output per ton of waste (Kwh/ton) occurs by multiplying the average calorific value by 0.40 = 419.112Kwh/ton.

Table 4.30Average calorific value of total waste

Average CV of MSW generated in Uyo (1047.78(Kwh/ton)

Table 4.31Specific energy output per ton of waste

Specific energy content in each tonne of 419.112(Kwh/ton)

MSW in Uyo

The electricity potential for municipal solid waste mass combustion plant is mathematically deduced thus;

Electricity potential (MW) = (MSW generation X Specific energy content in each tonne of MSW) / Average calorific value of waste)/ 1000 = $(72 \text{ x}419.112)/3.772 \div 1000 = 8.0 \text{ MW}$

The value gives an indication of the maximum capacity level at which a municipal solid waste plant could be developed taking into consideration a 100% mass burning utilization of municipal solid waste produced in Uyo.

•

Maximum Operating Capacity (KW)	Load Factor (%)	KJ/hr	Average KJ/Kg of MSW
8000	54	15551356.04	1891.263
8000	53	15263367.96	1891.263
8000	52	14975379.89	1891.263
8000	51	14687391.82	1891.263
8000	50	14399403.74	1891.263
8000	49	14111415.67	1891.263
8000	48	13823427.59	1891.263
8000	47	13535439.52	1891.263
8000	46	13247451.44	1891.263
8000	45	12959463.37	1891.263
8000	44	12671475.29	1891.263
8000	43	12383487.22	1891.263
8000	42	12095499.14	1891.263
8000	41	11807511.07	1891.263
8000	40	11519522.99	1891.263
8000	39	11231534.92	1891.263
8000	38	10943546.84	1891.263
8000	37	10655558.74	1891.263
8000	36	10367570.69	1891.263
8000	35	10079582.62	1891.263
8000	34	9791594.54	1891.263

Table 4.32Table showing the load factor and average KJ/kg of MSW

Maximum Operating Capacity (KW)	Load Factor (%)	Qty of MSW in Combustor (Kg/hr	Qty of MSW in Combustor (Tonnes/day)
8000	54	8229.196	197.501
8000	53	8076.804	193.843
8000	52	7924.411	190.186
8000	51	7772.019	183.528
8000	50	7619.626	182.871
8000	49	7469.234	179.241
8000	48	7314.841	175.556
8000	47	7162.449	171.899
8000	46	7010.056	168.241
8000	45	6857.664	164.582
8000	44	6705.271	160.927
8000	43	6552.878	157.269
8000	42	6400.486	153.612
8000	41	6248.093	149.954
8000	40	6095.701	146.297
8000	39	5943.308	142.639
8000	38	5790.916	138.982
8000	37	5638.523	135.325
8000	36	5486.131	131.667
8000	35	5333.738	128.009
8000	34	5181.346	124.352

Table 4.33: Showing load factor and quantity of MSW in combustor per day

Maximum Operating Capacity (KW)	Load Factor (%)	Qty of MSW in Combustor (Tonnes/year)	Heat Rate
8000	54	72087.865	3603
8000	53	70752.801	3603
8000	52	69417.842	3603
8000	51	68082.883	3603
8000	50	66747.925	3603
8000	49	65412.966	3603
8000	48	64078.008	3603
8000	47	62743.049	3603
8000	46	61408.091	3603
8000	45	60073.132	3603
8000	44	58738.174	3603
8000	43	57403.215	3603
8000	42	56068.257	3603
8000	41	54733.298	3603
8000	40	53398.340	3603
8000	39	52063.381	3603
8000	38	50728.423	3603
8000	37	49393.464	3603
8000	36	48058.502	3603
8000	35	46723.547	3603
8000	34	45388.589	3603

Table 4.34Showing load factor and heat rate

Maximum Operating	Load Factor (%)	Average KJ/Kg	KWh Annual
Capacity (KW)	5.4	of MSW	Production
8000	54	1891.263	37843200
8000	53	1891.263	37142400
8000	52	1891.263	36441600
8000	51	1891.263	35740800
8000	50	1891.263	35040000
8000	49	1891.263	34339200
8000	48	1891.263	33638400
8000	47	1891.263	32937600
8000	46	1891.263	32236800
8000	45	1891.263	31536000
8000	44	1891.263	30835200
8000	43	1891.263	30134400
8000	42	1891.263	29433600
8000	41	1891.263	28732800
8000	40	1891.263	28032000
8000	39	1891.263	27331200
8000	38	1891.263	26630400
8000	37	1891.263	25929600
8000	36	1891.263	25228800
8000	35	1891.263	24528000
8000	34	1891.263	23827200

Table 4.35Table showing load factor and KWh annual production

Summary of the equations

Quantity of MSW in combustor (Kg/hr)=(KJ/hr)/Average KJ/kg of MSW

Quantity of MSW in Combustor (Tonnes/day)=Qty of MSW (kg/hr)X24/1000

Quantity of MSW in combustor (Tonnes/year)=MSW (Tonnes/day)X365

KWh Annual production=Maximum capacity load factor X 24 X 365

Heat rate= (KJ/hr) X 24 X 365/KWh Annual Production

Total quantity of municipal solid waste generated in Uyo/day = **200,000 Kg/day**

Average calorific value of waste generated in Uyo=1047.78Kwh/ton=3772kj/kg

Optimal Operating capacity

= 8000KW=8MW

Actual Operating Capacity Ranges from $3.4 \Rightarrow 5.4$ MW. For this research, the load factor is at **4.4** MW. This is due to plant's capacity level according to Ikywashima company Itd of Japan.

44% load factor, the quantity of municipal solid waste per hour at this load factor that goes into the combustor per hour =6705.271Kg/hr.

Energy output from the combustor (Incinera 44% load factor	tor) to the boiler (steam generator) at =12663 Mj/hr
Specific energy output per tonne of waste	=384.686 KWh/ton= 1320.228Kj/kg.
The temperature of the superheated steam	=300 °C.
The pressure of the superheated steam	=25 bar
Exhaust pressure=(back pressure)	= 10 bar

Parameter	Sym bol	Unit	Value	Parameter	Sym bol	Unit	Value
Specific volume(Sat.liquid)	V _f	m³/kg	0.0014	Specific Volume(Sat.vapour)	Vg	m³ /kg	0.02167
Internal Energy(Sat.liquid)	U _f	kj/kg	1320.0	Internal Energy(Evap.steam)	U _{fg}	kj/kg	1231.0
Internal energy(Sat.vapour)	U _g	kj/kg	2563.0	Enthalpy(Sat.liquid	h _f	kj/kg	1344.0
Enthalpy of Evaporation	h _{fg}	kj/kg	1404.9	Enthalpy(Sat.vap.)	h _g	kj/kg	2749.0
Enthropy(Sat.liquid	S _j	$\frac{Kj}{kg} - K$	3.2534	Enthropy of Evaporation	S _{fg}	$\frac{Kj}{kg} - K$	2.4511
Entropy(sat.vapour)	S _g	$\frac{Kj}{kg} - K$	5.7045				

Table 4.36Showing thermodynamic properties of the plant

According to Ikiwashima Company Ltd of India, the load factor for this plant is within the range of 3.4 to 5.4 (i.e 34 to 54%). 44% is the range value within this range. At this load factor, the amount of MSW in the combustor, KJ/hr is given as 6705.271 and the energy output from the combustor at this load factor is given as 12663Mj/hr which is going into the boiler.

Since the total MSW generated in Uyo metropolis is 200 tonnes each day which is equivalent to 200000 kg/day and that which goes into the combustor (Incinerator) every hour is 6.705 tonnes. Dividing the 200000 kg of MSW generated in Uyo daily by the quantity of MSW that goes into the combustor gives 29.85hrs of operation. This shows that the plant can run conveniently throughout the day without any issue of lack of fuel (municipal solid waste). From the analysis, quantity of heat that goes into the turbine is 2.01Kwh at 300°C.

The final power output from the turbine will be equal to generator kwh/generator efficiency. This is equivalent to 2.01/0.44=4.56kwh.

This value is equivalent to 16416KJ or 16.416mj. This value gives daily power production of 109.44kwh and the annual plant efficiency is 109.4x 365days which is 39945kwh.

At the same time, the average quantity in megawatt of electricity from the national grid to Uyo used to be 50 MW per month initially. Presently the State government (AkwaIbom State) has been disconnected from the national grid due to the commissioning of Ibom power plant (IPP) in IkotAbasi local L.G.A of the state. Presently, the plant is producing about 100MW from its gas station. The state has three sub-stations, namely Itu, Eket and Uyo and the 100 Mw is divided for the three sub stations. Uyo being the state capital with higher load takes about 40 % amounting to 40 Mw. The Uyo district comprise of about 10 local government area. Uyo metropolis alone takes about 10 Mw of the electricity. As such the plant in research will be able to serve the whole of Nwaniba (University of Uyo permanent site) which the entire University consume about 3Mw and the densely populated area of Oron road in Uyo.

ECONOMICS

The aim of the economic assessment is to establish whether or not the development of a 8 MW MSW combustion plant for an area of Uyo metropolis would be a profitable investment or not . If there will be any economic benefit taking into consideration all other environmental factors.

4.5

Capital Costs.	H	%
MSW handling, storage and processing	21,600,000.00	
Rolling grate incinerator	23,800,000.00	
Steam boiler and feed heating system	28,000,000.00	
Steam-gas Turbine System	145,000,000.00	
Stack gas clean up and pollution control	28,000,000.00	
Field purchase and construction	25,000,000.00	
Plant engineering	23,600,000.00	
TOTAL	295,000,000.00	

Table 4.37Capital Cost of 8 MW MSW Combustion System.

Table 4.38	Labour	Wages r	per shift for	one vear

Occupation	Number of Employees per Shift	Labour Wages (N /year)
Workers	13	9, 800, 035.88
Engineers	5	12, 224, 000.00
Shift Managers	3	7, 916, 002.88
General Manager	1	3, 593, 294.57
TOTAL	30	33, 533, 333.33

Occupation	Number of Employees	Labour Wages (₦/year)
Workers	39	29, 400, 107.64
Engineers	15	36, 672, 000.00
Shift Managers	9	23, 748, 008.64
General Managers	3	10, 779, 883.71
TOTAL	90	100, 600, 000.00

Table 4.39Labour Wages for Three Shift per year

Annual Operating Cost.	N .	%.
Total yearly Usage and Maintenance Cost (O & M)	44, 218, 132.31	20.5
Capital Charge Rate	69, 886, 218.87	32.4
Total Labour Cost	82, 620, 126.36	38.30
Plant Insurance	1, 898, 144.22	8.8
TOTAL	198, 622, 621.80	100

Table 4.40Annual Operating Cost of 8 MW MSW Combustion Plant

Therefore, total cash outflows for the period (n) of one year

Capital cost of 8 MW plant + Labour cost for one year + Annual operating cost of the plant =

295, 000, 000.00 100, 600, 000.80 + 198, 622, 621.80 № 594, 222, 622.60

Cash inflow from the 8 MW MSW combustion plant is given by the total sales of the electricity that is generated.

Total annual power production is given by 30835200kwh.

Current charge of electricity for residential area of Uyo(current NEPA bill in Uyo, 2016) = № 12.82/KWh Therefore, annual sales is given by 30835200 * 18.47 = № 395, 307, 264.00 Annual Cashflow = Total sales – (Labour cost + Operating Cost) = 395, 307, 246.00 – (100, 600, 000.00+ 198, 622, 621.80). All in (ℕ) = №96, 084, 642.00

PAYBACK PERIOD

This measures the number of years it takes this project to recoup its initial investment, given its annual cashflows. Which is given by; $PbP = \frac{Initial \ outlay}{Annual \ Cashflow} = \frac{295,000,000}{96,084,642.00} = 3.07$ years.

This value shows actual payback period of the project.

NET PRESENT VALUE

NPV measures the amount of currency presently with the amount of same denomination tomorrow considering the increase account and return. If NPV of a prospective business is positive, then it can result to be economically viable, but if minus, then involving in the project should be declined.

From the explanation, the NPV is as follows;

NPV =
$$\sum_{n=0}^{N} \frac{C_n}{(1+r)^n} = 0$$

Denoting *n* as positive integer.

Total periods as N, and NPV which is to be calculated.

Numerical equation to calculate T. ant method]], T is can be written as

$$r_{n+1} = r_n - \operatorname{NPV}_n\left(\frac{r_n - r_{n-1}}{\operatorname{NPV}_n - \operatorname{NPV}_{n-1}}\right).$$

where r_n is considered the n^{th} approximation of the IRR

Now, Substituting the value in the equations, gives

Cn=Cash flows

N= The total amount of time which is the period

NPV= Net Present Value

r =IRR

Discount factor = $\frac{1}{(1+r)^n}$

Where r = Interest rate

Taking interest rate @ 15%

Calculation of the discount factors;

For year 0;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^0}=$	$=\frac{1}{(1.15)^0}$	= 1.000
For year 1;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^1}=$	$\frac{1}{(1.15)^1}$	= 0.8696
For year 2;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^2}=$	$\frac{1}{(1.15)^2}$	= 0.7561
For year 3;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^3}=$	$\frac{1}{(1.15)^3}$	= 0.6575
For year 4;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^4}=$	$=\frac{1}{(1.15)^4}=$	0.5718
For year 5;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.15)^5}=$	$=\frac{1}{(1.15)^5}$	= 0.4972

Year	Cashflow (N)	Discount factor	Pv (N)
0	295, 000, 000.00	1.0000	(295, 000, 000.00)
1	96, 084, 642.20	0.8696	83, 551, 862.78
2	96, 084, 642.20	0.7561	72, 653, 793.72
3	96, 084, 642.20	0.6575	63, 180, 327.59
4	96, 084, 642.20	0.5718	54 ,936, 902.34
5	96, 084, 642.20	0.4972	47, 770, 031.92
NPV			(27,092, 918.35)

Table 4.41: Cash Flow Analysis

Taking interest rate @ 30%

Calculation of the discount factors;

For year 0;	$\frac{1}{(1+r)^n} =$	$\frac{1}{(1+0.3)^0} =$	$\frac{1}{(1.3)^0}$	= 1.000
For year 1;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.3)^1}=$	$\frac{1}{(1.3)^1}$	= 0.7692
For year 2;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.3)^2}$	$\frac{1}{(1.3)^2}$	= 0.5917
For year 3;	$\frac{1}{(1+r)^n}$	$=\frac{1}{(1+0.3)^3}=$	$\frac{1}{(1.3)^3}$	= 0.4552
For year 4;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.3)^4}=$	$\frac{1}{(1.3)^4}$ =	• 0.3501
For year 5;	$\frac{1}{(1+r)^n} =$	$=\frac{1}{(1+0.3)^5}=$	$\frac{1}{(1.3)^5}$	= 0.2693

Year	Cashflow (₦)	Discount factor	Pv (ℕ)
0	295, 000, 000.00	1.0000	(295, 000, 000.00)
1	96, 084, 642.20	0.7692	73, 908, 306.78
2	96, 084, 642.20	0.5917	56, 853, 282.79
3	96, 084, 642.20	0.4552	43, 737, 729.13
4	96, 084, 642.20	0.3501	33, 639, 233.23
5	96, 084, 642.20	0.2693	25, 875, 594.14
NPV			(60, 985, 853.93)

Table 4.42:Showing Cash Flow

Taking interest rate @ 20%

Calculation of the Discount Factor;

For year 0; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^0} = \frac{1}{(1.2)^0} = 1.000$ For year 1; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^1} = \frac{1}{(1.2)^1} =$ For year 2; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^2} = \frac{1}{(1.2)^2} =$ For year 3; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^3} = \frac{1}{(1.2)^3} =$ For year 4; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^4} = \frac{1}{(1.2)^4} =$ For year 5; $\frac{1}{(1+r)^n} = \frac{1}{(1+0.2)^5} = \frac{1}{(1.2)^5} =$

Year	Cashflow (₦)	Discount factor	Pv (₩)	
0	295, 000, 000.00	1.0000 (295, 000, 000.00		
1	96, 084, 642.20		80, 070, 535.17	
2	96, 084, 642.20		66, 725, 445.97	
3	96, 084, 642.20		55, 604, 538.31	
4	96, 084, 642.20		46, 337,115.26	
5	96, 084, 642.20		38, 614, 262.64	
NPV			(7, 648, 102.66)	

Table 4.43: Showing Cash Flow

INTERNAL RATE OF RETURN

$$\mathbf{IRR} = DL = \left(\frac{NPV_P}{NPV_P + NPV_N}\right) * DH - DL$$

Where; DL = Lower discount factor

DH = Higher Discount factor

 NPV_P = Positive NPV

 NPV_N = Negative NPV

Now taking the Higher discount factor and the lower discount factor to be 30% and 15% respectively, gives internal rate of return as follow;

$$IRR = 0.15 + \left(\frac{27,092,918.35}{27,092,918.35 + 60,985,853.93}\right) * 0.3 - 0.15$$
$$= 0.15 + \left(\frac{27,092,918.35}{8,8078,772.28}\right) * 0.15$$
$$= 0.15 + (0.3075987284) * 0.15$$
$$= 0.15 + 0.04619$$
$$= 0.196$$
$$= 19.6\%$$

Now taking the Higher discount factor and the lower discount factor to be 20% and 15% respectively, gives internal rate of return as follow;

$$IRR = 0.15 + \left(\frac{27,092,918.35}{27,092,918.35 + 7648102.66}\right) * 0.2 - 0.15$$
$$= 0.15 + \left(\frac{27,092,918.35}{34741021.01}\right) * 0.05$$
$$= 0.15 + (0.7798) * 0.05$$
$$= 0.15 + 0.03899$$
$$= 0.153$$
$$= 15.3\%$$

4.6 EMISSION ANALYSIS

MSW in this research comprises the following:

- ✤ Organic waste-O
- ✤ Textiles, Wood, Leather- TWL
- Paper- Carton-PC
- Plastics-P
- Metals- M
- ✤ Glass-G
- Inert Matter-IM
- Others-OT

Predominant Emission from Each Relevant Group of Municipal Solid Waste

- ✤ Organic waste
 - Carbon dioxide
 - Methane
 - Nitrogen dioxide
 - Carbon monoxide
 - Sulphur dioxide
 - Hydrogen bromide
 - Hydrogen chloride
 - Etc.

Note: Total emission counted in units of CO_2 equivalent (CO_2 eq) calculated based on their different global warming greenhouse gas emission potential.

Greenhouse Gas Factors

<i>CO</i> ₂ emission	= 1
CH ₄ emission	= 21
NO_2 NO2 emission	= 310

- Leather waste
 - Nitrogen
 - Phosphorus
 - Chromium

- Sulphur
- Carbon monoxide
- Hydrogen Chloride

Plastic waste

Carbon dioxide	very high
• Nitrogen dioxide	relatively high
Hydrogen Chloride	very high
• Water vapour	relatively high
• Heavy metals	very high

For example, in the combustion of plastic like Polyvinylchloride (PVC), The following combustion reaction takes place;

 $PVC + O_2 =$ Water vapour+ Carbon dioxide + Carbon + Hydrogen Chloride So many other type of plastics will have other types of emission and some similar to that of the PVC depending on their production constituents

✤ Wood

- Water vapour
- Carbon dioxide
- Some little quantity of other elements

For instance, in the combustion of wood, the chemical nature of wood is closely related to sugars. To make things easier and simpler, wood is considered to be composed just of sugars, in which the equation is given as $C_6H_{12}O_6$ Therefore, when burning wood, the wood reacts with oxygen in air as follows; $C_6H_{12}O_6 + 6O_2 = H_2O$

The combustion products are carbon (IV) oxide in addition to vapour. The good aspect of the combustion using wood is that, as carbon dioxide which is a major greenhouse gas is produced, it is simultaneously absorbed by the growing trees in the forest and the environs. It is considered to be carbon neutral.

	Table. 4.44		Carbon Content of Different Waste Components		
S/N	Waste Component	Total Carbon (TC) in MSW (% of mass	Degradable Organic Carbon (DOC) in MSW (% of mass)	Dissimilable Organic Carbon (DOCF) in MSW (% of DOC)	Fossil Carbon (FC) in MSW (% of mass)
1	Organic	19	19	64	0
2	Wood	45	30	50	0
3	Textiles	39	20	30	19
4	Paper-Carton	33	33	35	0
5	Plastics	61	0	0	61
6	Metals	0	0	0	0
7	Glass	0	0	0	0
8	Others	24	16	39	8

Data Sourced from Literature search on the Emission of Some Municipal Solid Waste

Source: AEA (2001), Page 97

	Table 4.45 Summary of emission characteristics of flazardous waste				
S/N	Combustion Materials	EF [mg/kg]	EF [mg/kg]	EF [mg/kg]	
		TPM	PM10	PM2.5	
1	Paper	1300	930	600	
2	Wood	1000	830	500	
3	Plastics	1700	1500	500	
4	Organic	1500	1200	780	

Table 4.45Summary of emission Characteristics of Hazardous Waste

Source: Aerosol and Air Quality Research

EF= Emission Factor

TPM= Total Particulate Matter

PM10= Particulate Matter measured at 10milligram

PM2.5= Particulate matter measured at 2.5 milligram

S/N	Element	Paper	Wood	Plastics	Organic	Textiles
1	Pb	0.01-0.07	0.05-0.10	0.02-1.13	0.01-1.13	0.01-0.04
2	Ni	0.2-0.26	0.07-0.50	0.05-0.24	0.15-0.66	0.04-0.06
3	Cu	0.07-0.22	0.05-0.18	0.04-0.12	0.04-0.08	0.03-0.15
4	Cd	0.02-0.05	0.01-0.19	0.01-0.02	0.01-1.12	0.01-0.17
5	Cr	0.33-0.38	0.14-0.46	0.36-1.46	0.53-1.02	0.12-0.32
6	Zn	0.01-18.19	2.69-15.65	3.78-65.17	13.29-14.16	2.21.12.14`

Emission Factors involving high weight elements

Source: United State Environmental Protection Agency Emission Inventory Improvement Programme (EC/R, 2002): EIIP, (2004).

Pb = Lead Ni= Nickel Cu= Copper Cd= Cadmium Cr= Chromium Zn= Zinc

Table 4.46

Summary

With reference to Table 4.1, table 4.1 shows that paper, wood, textiles and organic waste have relatively low emission factors of particulate element of lead, nickel, copper, cadmium, chromium and zinc compared to plastics which is relatively very high.

With reference to table 4.2, table 4.2 shows the summary of emission characteristics of hazardous waste of paper, wood, plastics and organic waste with the following parameters: EF= Emission Factor

TPM= Total Particulate particle

PM10= Particulate particle measured at 10milligram

PM2.5= Particulate matter measured at 2.5 milligram

In which the values are given in the table.

The data obtained shows that, paper, wood, and organic have relatively low values compared to plastics which is higher. Meaning it has a more emission compared to others.

With reference to table 4.3, it means that, carbon content from different waste components of organic, wood, textiles, paper-carton, plastics, metals, glass and others. From the search, the total carbon (TC) and the fossil carbon (FC) are the factors that generate emissions during combustion of these waste materials. From the data, organic, wood, textiles, paper-carton and other types of waste have relatively low values compared to plastic waste.

DEDUCTIONS

From table 4.6 for model results for the prepared ratios of 9:1 at two combinations of MSW of Plastics- P and Textiles, wood and leather- TWL which produces the calorific value of 39.20MJ. Meaning, 90% of Plastic fuel and 10% of Textiles, wood and leather fuel at a particular time in the combustion chamber. Also, from table 4.6 for the model results for the prepared ratios of 5:4:1 at three combinations of MSW. That of Plastics-P, (Textiles, Wood, Leather)- TWL, and Organic- O which produces the calorific value of 34.6MJ. Meaning that 50% of Plastic fuel, 40% of Textiles, Wood,

Leather fuel and 10% of Organic fuel was used at a particular time in the combustion chamber.

With reference to table 4.1, 4.2, 4.3, it is shown that the emission factors of plastic, the carbon content of plastics and the emission characteristics of plastics are always higher than any other type of MSW. By this combination of MSW mix (MSWM), the emission from plastics will be low considering that other types of waste element have lesser values of this parameters and still achieve a better calorific values for energy generation.

CHAPTER FIVE CONCLUSION

5.0

Waste, at the beginning of this write up has been described as anything in which its usefulness is no longer needed at that particular time and place. It can also be described as something which people don't make use of at that time and the economic use is not appreciable. This discussion makes it easier to know what could be described as waste. Gaseous waste move from one point to the other in the form of osmosis. Solid waste are the waste that flows in the cutters, drains and channels.

In the course of this research, it is established that the thought that what people perceived as waste is not directly waste but "wealth". As these could be converted to different aspects that positively affect the life of human. Presently, it could be converted to generate fossil fuels; municipal solid waste can still be recycled to produce other useful products for man use. Fertilizers, which is used for agricultural activities may be produced from reuse in the form of recycling of refuse. Various forms of fertilizers could be produced from recycled sewage and other domestic refuse and garbage.

This particular study has shown that, it is possible to generate electric power through municipal solid waste (MSW) by incineration process.

The study also identified the objectives to be achieved. These include, firstly, determining the total amount and content of MSW generation in Uyo metropolis. Secondly, classification of MSW composition in Uyo metropolis. Thirdly, energy output from each of the waste composition. Also, energy content coming out of each of the waste constituent. Finally, developing a model to ascertain which of the waste combination will give a better energy output taking into consideration the quantity of municipal solid waste.

It is obvious that these objectives are fully addressed

The theoretical operating capacity of the plant is 8 MW. According to Ikiwashima Company Ltd of India, the load factor for this plant is within the range of 3.4 to 5.4 (i.e.

34 to 54%). 44% is the range value within this range. At this load factor, the amount of MSW in the combustor in KJ/hr which is given as 6705.271 and the energy output from the combustor at this load factor is given as 12663Mj/hr which is going into the boiler.

Since the total MSW generated in Uyo metropolis is 200 tonnes/day which is equivalent to 200000 kg/day and that which goes into the combustor (Incinerator) every hour is 6.705 tonnes. Dividing the 200000 kg of municipal solid waste generated in Uyo each day by that quantity of MSW that goes into the combustor gives 29.85hrs of operation. This shows that the plant can run conveniently throughout the day without any issue of lack of fuel (municipal solid waste). From the analysis, quantity of heat that goes into the turbine is 2.01Kwh at 300°C.

The final power output from the turbine will be equal to generator kwh/generator efficiency. This is equivalent to 2.01/0.44=4.56kwh.

This value is equivalent to 16416KJ or 16.416mj. This value gives daily power production of 109.44kwh and the annual plant efficiency is 39945kwh.

At the same time, the average quantity in megawatt of electricity from the national grid to Uyo used to be 50 MW per month initially. Presently the State government (AkwaIbom State) has been disconnected from the national grid due to the commissioning of Ibom power plant (IPP) in IkotAbasi. Presently, the plant is producing about 100 MW from its gas station. The state have three sub stations, namely Itu, Eket and Uyo and the 100 Mw is divided for the three sub stations. Uyo being the state capital with higher load takes about 40 % amounting to 40 Mw. The Uyo district comprise of about 10 local government area. Uyo metropolis alone takes about 10 Mw of the electricity. As such the plant in research will be able to serve the whole of Nwaniba(University of Uyo permanent site) which the entire University consume about 3Mw and the densely populated area of Oron road in Uyo.

It is obvious from the analysis that this project will remarkably curb to some extent, the poverty level in the society considering the number of people that is going to employ. This will also help the government in cutting down the unemployment level in the society that has been a serious problem to government. Apart from creating job opportunities to the citizenry, it will also generate income to the system considering the fast payback period, a better economic value to the society. Finally, as it were the practice in a great many developed economies, environmental legislation should appreciate various means of what is expected from corporate organisation and parastatals for environmental protection in investing in MSW. This will go a long way in eliminating most of the waste management issues.

REFERENCES

- Achinger, W. C. and Daniels, C. E. (1972) Seven Incinerators: Paper Presented to National Incinerator Conference, 17-20th May 1970. Cincinnati, Ohio. pp. 248-239.
- Adedibu, A.A. (1983). Solid wastes management in Nigeria: problems and prospect. Paper presented at the National Conference on Development and the Environment, University of Ibadan, Ibadan, January 17-19.
- Albert, J. G. (1972). Resource Recovery. A New Field for Technology Application, National Centre for Resource Recovery, Inc. pp. 67-71.
- Atkinson, S.F. (1995). A geographic information systems approach to sanitary landfill siting procedures: A case study: Environmental Professional, 17.1, pp. 20-26.
- Barraclough, S. (1993) Social Dimensions of Desertification: A Review of Key Issues Emerging from the Literature. Desertification Control Programme Activity Centre, 1993, Mimeo. Geneva UNRISD.
- Beede, David N. and Bloom, David, E. (1995). The Economics of Municipal Solid Waste. *The World Bank Research Observer*, Vol. 10, No. 2, August, 1995, pp. 113-150.
- Beigi, Hossein, MitraDadvar, and RoueinHalladj. "Pore network model for catalytic dehydration of methanol at particle level." *AIChE Journal* 55.2 (2009): 442-449.
- Blokland, J. (1999). Draft Report on the proposal for a Council Decision on the incineration ofwaste, Committee on the Environment, Public Health and Consumer Protection, *European Parliament*, January 12, 1999. p. 13.
- Boerrigter, H., Den Uil, H. and Calis, H.P., 2003. Green diesel from biomass via Fischer-Tropsch synthesis: new insights in gas cleaning and process design. *Pyrolysis* and gasification of Biomass and waste.
- Bouallagui, H., Touhami, Y., Cheikh, R. B., &Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. *Process biochemistry*, 40(3-4), 989-995.
- Buekens, A. and Huang H. (1998): Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxins and Furans in Municipal Solid Waste Incineration. *Journal of Hazardous Materials*.

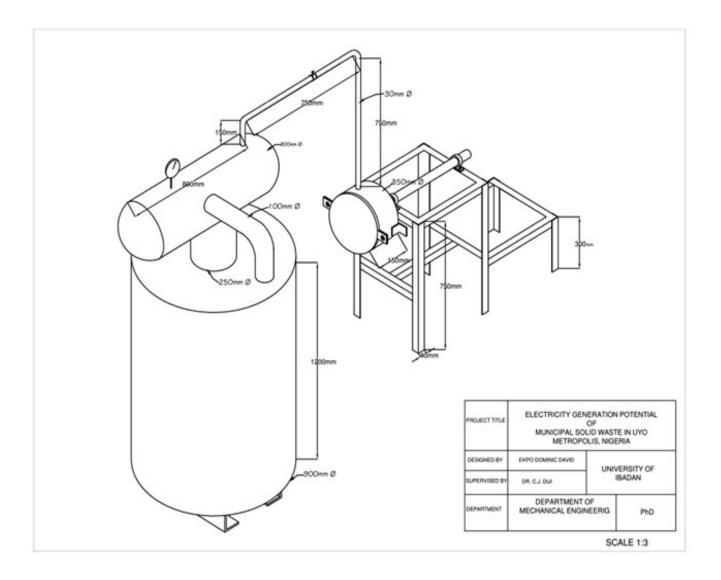
- Bridgewater A. and Evans. G. (1993): An Assessment of Thermochemical Systems for Processing Biomass and Refuse.
- Chandler, A. John, T. Taylor Eighmy, O. Hjelmar, D. S. Kosson, S. E. Sawell, J. Vehlow, H. A. Van der Sloot, and J. Hartlén. *Municipal solid waste incinerator residues*. Vol. 67. Elsevier, 1997.
- Chen, X., Yan, W., Sheng, K. and Sanati, M., 2014. Comparison of high-solids to liquidanaerobic co-digestion of food waste and green waste. *Bioresource technology*, 154, pp.215-221
- Christiansen, Kim Michael. (1999). Waste Annual Topic Update: 1998. Copenhagen: European Environmental Agency. Pp.23-27.
- Demirel, B., and P. Scherer. "Production of methane from sugar beet silage without manureaddition by a single-stage anaerobic digestion process." *Biomass and Bioenergy* 32, no. 3 (2008): 203-209.
- Dry, M.E. (1981): The Fischer- Tropsch Synthesis. Catalyst Science and Technology Journal, Vol. 1, Springer- Verlag, New York, PP 159-255.
- EPA (1989). United States Government, Environmental Protection Agency. Decision Makers Guide to Solid Waste Management. Washington: US Environmental Protection Agency, 1989
- Evans, R. J., and Milne, T.A (1997): Chemistry of Tar Formation and Maturation in the Thermochemical Convertion of Biomass. Developments in Thermochemical Biomass Conversion, Vol. 2
- Fagbemi, L., L. Khezami, and R. Capart. "Pyrolysis products from different biomasses: application to the thermal cracking of tar." *Applied energy* 69.4 (2001): 293-306.
- Feldmann H. F. (1973): A Process for Converting Solid Waste to Pipeline Gas. United State Patent.
- Fellner, Johann, Oliver Cencic, and Helmut Rechberger. "A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-toenergy plants." *Environmental science & technology* 41.7 (2007): 2579-2586.
- FEPA (1990). 1988 Cap 131 (1990, LFN), 1992 amendment of the Federal Environmental Protection Act. 59.
- Ferrari, M. (1988). International Workshop on the Goals and Guidelines of the National Environmental Policy for Nigeria, 12–16th September 1999. Federal Environmental Protection Agency, Lagos.
- FGN (1978). The 1976 local government reform. Federal Ministry of Information, Lagos.

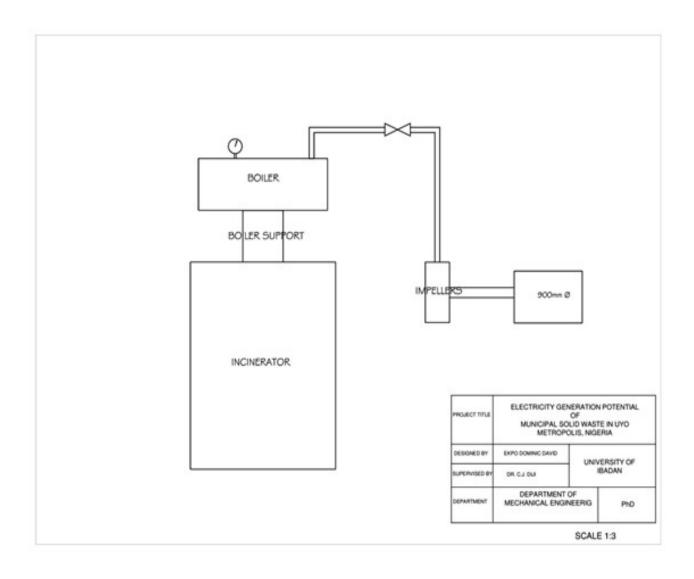
- FGN Constitution. (1979). the Constitution of the Federal Republic of Nigeria 1979. Federal Ministry of Information, Lagos
- Hajji, A., Rhachi, M., Garoum, M., andLaaroussi, N. (2016, July). The effects of pH, temperature and agitation on biogas production under mesophilic regime. In 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-4). IEEE.
- Hollenbacher R.H. (1992): Biomass Combustion technology in the United States. Biomass Combustion Conference, Reno, Nevada, US Department of Energy, *Western Regional Biomass Energy Programme.*
- Hutnan, M., Drtil, M., Derco, J., Mrafkova, L., Hornak, M., and Mico, S. (2001). Twostep pilot-scale anaerobic treatment of sugar beet pulp. *Polish Journal of Environmental Studies*, 10(4), 237-244.
- Izumi, K., Okishio, Y. K., Nagao, N., Niwa, C., Yamamoto, S., and Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. *International biodeterioration& biodegradation*, 64(7), 601-608.
- Kao, Jehng-Jung, Hung-Yue Lin, and Wei-Yea Chen. "Network geographic information system for landfill siting." *Waste management & research* 15.3 (1997): 239-253
- Klein, A. (2002): Gasification, An Alternative Process for Energy Recovery and Disposal of Municipal Solid Waste. M. ScThesis, Earth and Environmental engineering, Columbia University, New York.
- McGauhey, P. H. (1960). Refuse Composting Plant at Norman, Oklahoma. Compost Science, Vol.1.3, Autumn, 1960, pp.5-8
- Momcilovic, D. and Rasooly, A. (2000). Detection and analysis of animal materials in food and feed. Journal of Food Protection, 63: 1602-1609.
- National Agricultural Research Organization (2001). Standard Tables of Feed Composition in Japan.
- Ogbonna, D. N., Ekweozor, I. K. and Igwe, F. U. (2002). Waste management: a tool for environmental protection in Nigeria. Vol. 31.1, pp. 55-57.
- O'Leary, Philip R. and Walsh, Patrick H. (1995). Decision Makers Guide to Solid Waste Management. Environmental Protection Agency. Washington, D.C., Vol. 2: 95-123.
- OTA (1989). Facing America's Trash. What Next for Municipal Solid Waste? Washington.
- Otte, P. (1995): Analysis of Metals and calorific Value in Component from Household Waste. National Institute of Public Health and Environmental Protection Report Bilthoven, Netherlands.

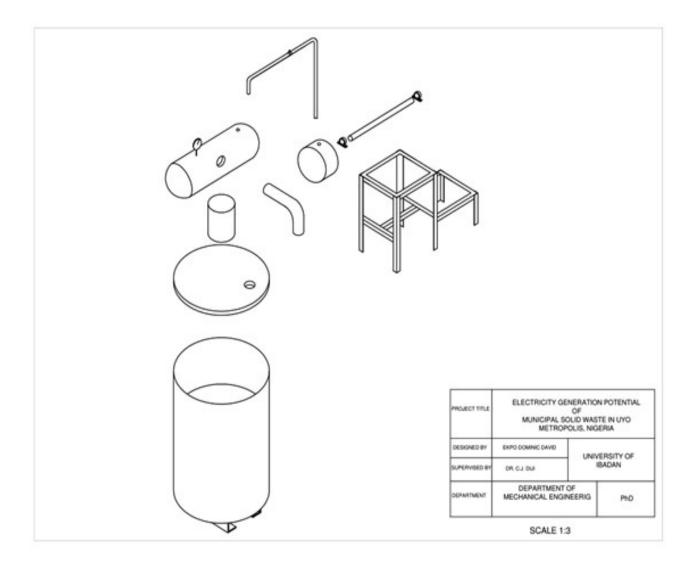
- Patel, A., Arora, N., Pruthi, V., andPruthi, P. A. (2017). Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. *Journal of cleaner production*, 142, 2858-2864.
- Perez, H. R. (2006). Health Effects Associated With Organic Dust Indoor and Built Environment. 15.3: p. 58
- Pickford, J. (1983). The Solid Waste Problem of Poor People in the Third World Waste Management. John Wiley, Chichester, pp.485-92.
- Poizot, P and Dolhem, F. (2009): Clean Energy New Deal for a Sustainable World from Non- CO2 Generating Energy Sources to Greener Electrochemical Storage Devices. *Energy and Environmental Science Journal*, Vol. 55, No. 2, PP. 442-449.
- Prescott, J. H. (1967). Composting Plant Converts Refuse into Organic Soil Conditioner. Chemical Engineering. Vol.74, 6th November,1967,pp.232-234.

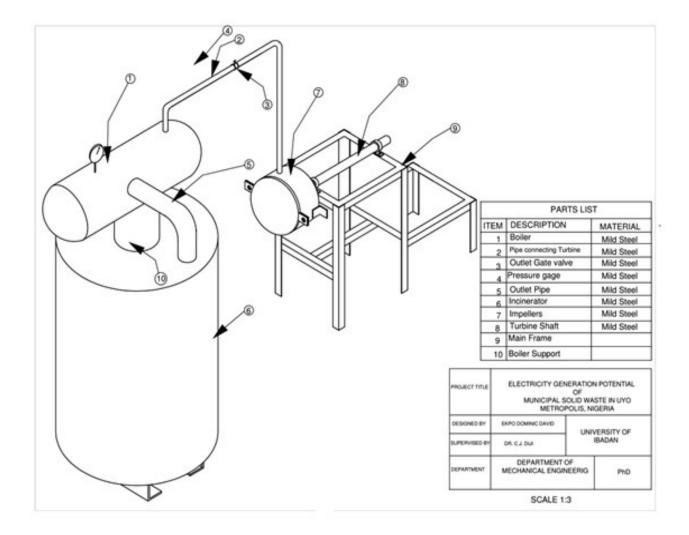
Ratanatamskul, C., O. Wattanayommanaporn, and K. Yamamoto. "An on-site prototype

two-stageanaerobic digester for co-digestion of food waste and sewage sludge for biogas production from high-rise building." *International Biodeterioration& Biodegradation* 102 (2015): 143-148.


- Reed, T. B. and Gaur, S. (1998): Survey of Biomass Gasification. Gasifier Projects and Manufacturers around the World. The National Renewable Energy Laboratory and the Biomass Energy Foundation Inc, Volume 1
- Salvato, J. A. (1970). Sanitary Landfill Planning, Design, and Operation. Public Works Association, Vol.101, pp.93-97.
- Sayeki, M., Kitagawa, T., Matsumoto, M., Nishiyama, A., Miyoshi, K., Mochizuki, M., and Abe, A. (2001). Chemical composition and energy value of dried meal from food waste as feedstuff in swine and cattle. *Animal Science Journal (Japan)*.
- Smoot, L.D. and Smith, P. J. (1985): Coal Combustion and Gasification. Plenum Press, New York.
- Sniffen, C. J., O'Connor, J. D. and Fox, D. G. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. *Journal of Animal Science* 70: 3562-3577.
- Sreekrishnan, T.R., Kohli, S. and Rana, V., 2004. Enhancement of biogas production from solid substrates using different techniques—a review. *Bioresource* technology, 95(1), pp.1-10.
- Suhartini, S., Heaven, S. and Banks, C.J., 2014. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. *Bioresource technology*, *152*, pp.202-211.


- Toole, A.W., Lane, P.H., ArbogastJr, C., Smith, W.R. and Peter, R., 1961. *Charcoal: Production, Marketing, and Use*(No. FPL-2213). FOREST PRODUCTS LAB MADISON WI.
- White, P., Franke, M. and Hindle, P., 1999. Integrated waste management. In *Integrated solid waste management: A lifecycle inventory* (pp. 13-24). Springer, Boston, MA.
- Wiley, J. S. (1969), International Research Group on Refuse Disposal (IRGRD), U.S. Department of health, Education and welfare 1.12: 308.
- Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z. and Ruan, W., 2015. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. *International Biodeterioration& Biodegradation*, 105, pp.153-159.


APPENDICES


Bills of Engineering Measurement and Evaluation

S/N	ITEM	DESCRIPTION	QUANTITY	UNIT PRICE (N)	AMOUNT (N)
1.	Mild steel	1220mm x 5mm	1 roll	12,500.00	12,500.00
	plate				
2.	Angle iron	5900mm x	3pieces	3,100.00	9,300.00
		6.50mm			
3.	Mild steel	1220mm x	1 roll	10,500.00	10,500.00
	plate	2.5mm.			
4.	Shaft	1200mm x	1	11,600.00	11,600.00
		250mm			
5.	Steel pipe	12.50mm x	1	4,800.00	4,800.00
		1220mm			
6.	Bearings	250mm	2	2,550.00	5,100.00
7.	Bolts and nuts	12mm	12	150.00.00	1,800.00
8.	Bolts and nuts	10mm	8	100.00	800.00
9.	Pulley	300mm,100mm	2	2,800.00	5,600.00
		dia			
10	Electric motor	2HP 1420rpm	1	19,200.00	19,200.00
11	Miscellaneous				17,000.00
				TOTAL	98,200.00

