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ABSTRACT

Neural Network (NN) allows complex nonlinear relationships between the response

variables and its predictors. The Deep NN have made notable contributions across

computer vision, reinforcement learning, speech recognition and natural language

processing. Previous studies have obtained the parameters of NN through the clas-

sical approach using Homogeneous Activation Functions (HOMAFs). However, a

major setback of NN using the classical approach is its tendency to over-fit. There-

fore, this study was aimed at developing a Bayesian NN (BNN) model to ameliorate

over-fitting using Heterogeneous Activation Functions (HETAFs).

A BNN model was developed with Gaussian error distribution for the likelihood

function; inverse gamma and inverse Wishart priors for the parameters, to obtain

the BNN estimators. The HOMAFs (Rectified Linear Unit (ReLU), Sigmoid and

Hyperbolic Tangent Sigmoid (TANSIG)) and HETAFs (Symmetric Saturated Lin-

ear Hyperbolic Tangent (SSLHT) and Symmetric Saturated Linear Hyperbolic Tan-

gent Sigmoid (SSLHTS)) were used to activate the model parameters.The Bayesian

approach was used to ameliorate the problem of over-fitting, while the Posterior

Mean (PM), Posterior Standard Deviation (PSD) and Numerical Standard Error

(NSE) were used to determine the estimators’ sensitivity. The performance of the

Bayesian estimators from each of the activation functions was evaluated in the

Monte Carlo experiment using the Mean Square Error (MSE), Mean Absolute Er-

ror (MAE) and training error as metrics. The proximity of MSE and training error

values were used to generalise on the problem of over-fitting.

The derived Bayesian estimators were β ∼ N(Kβ, Hβ) and γ ∼ exp (−1
2
{Fγ+Mγ);

where Kβ is derived mean of β, Hβ is derived standard deviation of β; Fγ and

Mγ are the derived posteriors of γ. For ReLU, the PM, PSD and NSE values for

β and γ were 0.4755, 0.0646, 0.0020; and 0.2370, 0.0642, 0.0020, respectively; for

Sigmoid: 0.4476, 0.2734, 0.0087; and 1.0269, 0.2732, 0.0086, respectively; for TAN-

SIG: 0.4718, 0.0826, 0.0026, and 1.0239, 0.0822, 0.0026, respectively. For SSLHT,

the PM, PSD and NSE values for β and γ were 0.8344, 0.0567, 0.0018; and 1.0242,

0.0566, 0.0016, respectively; and for SSLHTS: 0.89825, 0.01278, 0.0004; and 1.0236,
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0.0127, 0.0003, respectively. The MSE, MAE and training error values for the per-

formance of the activation functions were ReLU: 0.1631, 0.2465, 0.1522; Sigmoid:

0.1834, 0.2074, 0.1862; TANSIG: 0.1943, 0.269, 0.1813; SSLHT: 0.0714, 0.0131,

0.0667; and SSLHTS: 0.0322, 0.0339, 0.0328, respectively. The HETAFs showed

closer proximity between MSE and training error implying amelioration of over-

fitting and minimum error values compared to HOMAFS.

The derived Bayesian neural network estimators ameliorated the problem of over-

fitting with close values of Mean Square Error and training error, thus making

them more appropriate in handling Neural Network models. They could be used

in solving problems in machine learning.

Key words: Bayesian estimator, Estimators performance evaluation, Bayesian

neural network, Monte Carlo experiment, Homogeneous activation function

Word count: 494
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Chapter 1

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The discipline of Artificial Neural Networks (ANN) arose from the thought of mim-

icking the functioning of the same human brain that was trying to solve a prob-

lem(Yang et al, 2020). ANN has contributed a noticeable benchmark in Artificial

intelligence(AI) and this makes it one of the most commonly used models in deep

learning.

The study of AI, often known as machine intelligence, tries to provide computer

cognitive abilities so that we may teach them to learn and solve problems. Its goal

is to imitate human intelligence in computer. Computer can only be designed to

do particular functions of the human brain, hence artificial intelligence (AI) cannot

fully mimic human intelligence. A subfield of artificial intelligence called ”machine

learning” enables computer to self-program using input data. AI can now solve

problems based on data, thanks to machine learning. Machine learning algorithms

include ANNs as an illustration.(Shen et al, 2020)

Deep learning, which develops very abstract concepts, is a complex network of

neural networks with additional processing layers. They are frequently employed

for difficult tasks including handwriting recognition, image categorization, and im-

age recognition. In ANNs, the neuron is defined as a central processing unit that

conducts a mathematical operation to produce one output from a group of inputs,

much like the biological neuron structure(Wang et al, 2019). The weighted sum of

the inputs plus the bias determines a neuron’s output. If the overall signal received

exceeds an activation threshold, each neuron performs a very basic function called

activation. The computation of all the neurons’ outputs, which is a completely
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predictable calculation, is the sole purpose of the entire neural network.

ANN is just a collection of approximations of mathematical functions. The terms

Input layer, Hidden layer, Output layer, Weights, Bias, and Activation functions

are used in relation to ANNs. There is a processor, a set of inputs, and a set of

outputs. Neural networks also use this tiered strategy. The inputs make up the

input layer, the processing is done by one or more hidden layers in the middle, and

the results are displayed in the output layer.

The hidden layer has the magic to convert the input to the desired output. The

understanding of the hidden layer requires knowledge of weights, bias, and acti-

vation functions(Qihen et al, 2023). Deep neural networks have been successfully

applied to many domains, including very sensitive domains like health-care, secu-

rity, fraudulent transactions and many more. These domains rely heavily on the

predictions accuracy of the model and even one overconfident decision can result

in a big problem. Also, these domains have very imbalanced datasets (one in a

million fraudulent transactions, nearly five percent of all tests result in positive

cancer results, less than one percent email is spam), and this leads to the model

being over-fitted to the over-sampled class. Bayesian neural networks, on the other

hand, are more robust to over-fitting and can easily learn from small datasets.

The Bayesian approach further offers estimates via its parameters in the form of

probability distributions(Magris and Iosifidis, 2023). At the same time, by using a

prior probability distribution to integrate out the parameters, the average is com-

puted across many models during training, which gives a regularization effect to

the network, thus preventing over-fitting.
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Figure 1.1: Neural Network
Source: Artificial Intelligence Wiki
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1.2 STATEMENT OF THE STUDY

Deep learning models are designed to generalize well to any data from the problem

area using training data. This is really important since we want our model to

make predictions on previously unexplored datasets. When a model is over-fitted,

it attempts to learn both the noise in the training data and too many details from

it. The model’s performance on unknown or test datasets suffers as a result. As

a result, the training dataset’s characteristics and patterns are not generalized by

the network. Therefore, it is crucial to offer a better method of addressing over-

fitting in neural network models in order to lessen the issue and make the model

trustworthy for accurate prediction.

1.3 JUSTIFICATION OF THE STUDY

In supervised machine learning, over-fitting is a common problem that cannot en-

tirely be avoided. Either the restrictions of algorithms which are too complex and

require too many parameters, or the limitations of training data, which may be

small or contain a lot of noise, cause it to happen. Numerous methods are cre-

ated to lessen the impact of over-fitting in response to these issues. On the one

hand, algorithms based on the ”early-stopping” strategy enable us stop training

before learning noises to deal with noises in the training set; on the other hand,

algorithms based on the ”reduce the size of network” strategy give us a method

to minimize noises in the training set. On the other hand, the ”data-expansion”

approach is suggested for complex models that need a lot of data to precisely adjust

their hyper-parameters. Additionally, ”Regularization”-based algorithms assist us

in differentiating between noise, meaningful, and meaningless information and giv-

ing each a distinct weight.

The majority of models are complex because, in most cases, the final output might

be influenced by dozens or even hundreds of parameters when solving real-world

situations. Instead of arbitrarily eliminating the aspects that are similar to be-

ing worthless, a well-generalized model will be more likely to take into account all

possible features. To fine-tune the set of hyper-parameters, such as the weights,
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the increase in parameters necessitates a large amount of training data. Data thus

becomes a crucial component of machine learning, particularly supervised machine

learning. The majority of the time, the more training data we utilize, the more

accurate the final model is. Based on the issues mentioned above, this study aims

to reduce over-fitting in neural network models utilizing the Bayesian framework

at various data training sets and sample sizes, both small and large.

1.4 MOTIVATION OF THE STUDY

The Multi-Layer Perceptron (MLP), which employs homogeneous activation func-

tions (HOMAFs), has been demonstrated to be effective in terms of model precision,

particularly with complicated or big data sets. In the MLP, the hyperbolic tangent,

sigmoid, and symmetric saturated linear HOMAFs are frequently employed. These

investigations revealed that HOMAFs have model precision constraints when used

with complex systems, such as security data sets, which can result in significant

mistakes and poor model performance. The body of research on reliable models for

complex HOMAFs is scant. Therefore, it is necessary to create better models for

these functions. The goal of this study is to develop models that are understand-

able, capable of modeling a wide variety of problems, comparable to the current

MLP in terms of precision and generalization, as well as avoid large errors seen in

previous models. To that end, heterogeneous activation functions (HETAFs) with

various complexities will be combined within the Bayesian network.

1.5 AIM AND OBJECTIVES OF THE STUDY

The aim of this study is to develop a Bayesian Neural Network(BNN) model using

heterogeneous activation functions to handle the problem of over-fitting in neural

network model. The objectives are to:

(1) determine the weights of Bayesian Neural Network using both homogenous and

heterogeneous activation functions.
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(2) study the asymptotic behaviour of BNN using these activation functions.

(3) examine the performance of BNN model under different activation functions.

1.6 SIGNIFICANCE OF THE STUDY

Artificial neural networks (ANNs) have recently been successfully used in a wide

variety of problem domains, including those in the fields of engineering, geology,

finance, medicine, and other physical and biological sciences, as well as water re-

sources and environmental research. The attempt to simulate the capabilities of

the human brain through these networks is what has people so excited. Neural

networks are intriguing from a statistical standpoint due to their potential appli-

cation in prediction and classification issues.

In reality, it has been applied to a huge range of applications that typically involve

statistical approaches. ANNs are used to solve issues that were typically resolved

using traditional statistical techniques like regression, discriminant analysis, logis-

tic regression, Bayes analysis, multiple regression, and ARIMA time-series models.

All areas of statistics have seen the introduction of neural networks, including

econometrics and econometric issues.

1.7 ORGANISATION OF THE DISSERTATION

PRESENTED

The thesis consists of five chapters. Following this chapter is the chapter which

reviews literature on Artificial Neural Network and past research work in this

field. Chapter three contains theoretical framework: Homogeneous artificial neu-

ral network model, Heterogeneous artificial neural network model and Bayesian

estimationof Neural Network parameters. Analysis of data and interpretations are

discussed in chapter four while chapter five presents the summary of findings, con-

clusions and recommendations along with research contribution to knowledge and

suggestions for further research.
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Chapter 2

LITERATURE REVIEW

2.1 CHAPTER OVERVIEW

This chapter reviews literature on neural network weights, over-fitting and also on

neural network and Bayesian neural network models. Few terminologies used in

this work are also explained.

2.2 DEFINITION OF SOME TERMS

(1) Overfitting:A machine learning model overfits when it matches the training

data too closely, losing the capacity to categorize and predict test data.

(2) Activation function: The activation function of a node in artificial neural

networks determines the node’s output given an input or group of inputs.

(3) Weights: Weights are the actual values that are associated with each input or

characteristic, and they communicate the significance of that input or feature in

predicting the outcome.

(4) Bayesian Approach: The first step in the Bayesian approach is to define a

prior distribution for the parameters that need to be estimated. Without taking

into account the dataset upon which the model is estimated, the prior reflects the

knowledge held by the researcher. By considering previous data that is not in the

sample, a prior can be created in a time series setting.
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2.3 WEIGHTS AND BIASES

Weights in an ANN are the most important factor in converting an input to impact

the output. This is similar to slope in linear regression, where a weight is multi-

plied to the input to add up to form the output. Weights are numerical parameters

which determine how strongly each of the neurons affects another.

For a typical neuron, if the inputs are x1, x2, and x3, then the synaptic weights to

be applied to them are denoted as w1, w2, and w3 and the output is

y = f(x) =
∑

xiwi (2.1)

where i is from 1 to the number of inputs. Simply, this is a matrix multiplication

to arrive at the weighted sum. Bias is like the intercept added in a linear equation.

It is an additional parameter which is used to adjust the output along with the

weighted sum of the inputs to the neuron. The processing done by a neuron is thus

denoted as:

output = sum(weights ∗ inputs) + bias (2.2)

A function is applied on this output and is called an activation function. The input

of the next layer is the output of the neurons in the previous layer, as shown in the

figure 2.1.
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Figure 2.1: Weights and Activation Function
Source: Artificial Intelligence Wiki
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2.4 ACTIVATION FUNCTIONS

The activation functions are primarily responsible for the abstraction of neural net-

work computation. A mathematical function called an activation function adds the

magic of neural network processing by converting an input to an output. Without

activation functions, neural networks will operate similarly to linear functions. A

polynomial of degree one is a linear function, i.e, a straight line. The majority of

the issues that neural networks attempt to address are complicated and nonlinear

in nature. The activation functions are utilized to achieve the nonlinearity. A

nonlinear function’s graph is curved, which increases complexity. As true univer-

sal function approximators, neural networks are given the nonlinearity property

through activation functions.

2.5 OVERFITTING INMACHINE LEARNING

When a statistical model does not correctly anticipate the outcomes of testing data,

it is said to be overfitted. A model starts learning from the noise and erroneous

data entries in our data set after receiving such a large amount of training data.

Additionally, when testing using test data yields high variance. Because of the

noise and excess details, the model fails to appropriately identify the data. Non-

parametric and non-linear approaches are the root causes of overfitting since they

provide machine learning algorithms more freedom to create the model depending

on the dataset, which can lead to the creation of highly irrational models.

2.5.1 WHY DOES OVERFITTING OCCUR

Only if the machine learning model generalizes to all varieties of data within its

domain then precise predictions is obtained. When a model can’t generalize and

instead fits too closely to the training dataset, this is known as overfitting. Several

factors contribute to overfitting, including:

(1) Insufficient data samples and a lack of sufficient training data prevent an

accurate representation of all possible input data values.

(2) Large volumes of unimportant information, or noisy data, are present in the
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training data.

(3) The model spends too much time training with just one sample set of data.

(4) Due of the high model complexity, the training data’s noise is learned.

2.5.2 HOW TO PREVENT OVERFITTING

By growing and diversifying training data set, as well as by employing other data

science techniques, such as the ones listed below, overfitting can be avoided.

(1) Early Stopping: Early stopping puts the machine learning model’s training

phase on hold before it can pick up on the data noise. The timing must be per-

fected, or the model won’t produce reliable results.

(2) Prunning: When modellling, a number of features or parameters that have

an effect on the final prediction may be found and removing unimportant features

from the training set and selecting the most crucial ones is done. This process is

known as feature selection or pruning.

(3) Regularization: A group of training/optimization methods called regular-

ization aim to decrease overfitting. By ranking variables according to relevance,

these techniques attempt to exclude those aspects that have no impact on the re-

sults of the predictions.

(4) Ensembling: Predictions from various different machine learning algorithms

are combined in assembling. Because they frequently produce erroneous results,

some models are referred to as weak learners. For more accurate results, ensemble

methods mix all the weak learners. To examine sample data and select the most

precise results, they use a variety of models. Bagging and boosting are the two

primary ensemble techniques. While bagging trains them concurrently, boosting

trains various machine learning models one at a time until the desired outcome is

achieved.

(5) Data Augumentation: When using data augmentation, a machine learning
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technique, the sample data is slightly altered each time the model uses it. Small

adjustments to the input data can be made to achieve this. Data augmentation,

when used sparingly, makes the training sets seem special to the model and stops

it from learning out their characteristics.

2.6 THEORETICAL REVIEW

During the past five years the Bayesian deep learning community has developed

increasingly accurate and efficient approximate inference procedures that allow for

Bayesian inference in deep neural networks. A study was carried out to cast doubt

on the current understanding of Bayes posteriors in popular deep neural networks,

demonstrated through careful MCMC sampling that the posterior predictive in-

duced by the Bayes posterior yields systematically worse predictions compared to

simpler methods including point estimates obtained from Stochastic Gradient De-

scent (SGD) (Wenzel, 2020). The findings showed that predictive performance is

improved significantly through the use of a “cold posterior” that overcounts evi-

dence. Such cold posteriors sharply deviate from the Bayesian paradigm but are

commonly used as heuristic in Bayesian deep learning papers.

Udomboso (2013) revealed that for transfer functions to map the input layer of the

statistical neural network model to the output layer perfectly, they must lie within

bounds that characterize probability distributions. The heterogeneous transfer

function is established as a Probability Distribution Function (p.d.f), and its mean

and variance are shown.

Deep neural networks could be grounded and perform better, thanks to Bayesian

inference. It promises to be resistant to overfitting, to streamline the training

process and the hyperparameter space, and to offer a calibrated measure of uncer-

tainty that can improve agent exploration, forecast fairness, and decision-making.

Bayesian inference is made possible by Markov Chain Monte Carlo (MCMC) tech-

niques, which produce samples from the posterior distribution of the model’s pa-

rameters. For large-scale deep learning problems, sampling approaches have so

far performed worse than optimization methods despite the theoretical benefits of

Bayesian inference and the resemblance between MCMC and optimization meth-
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ods.

Many specialists and academics have been researching overfitting issues in the re-

gression process since the emergence of machine learning technology, and they have

produced a number of research findings. For instance, Hinton et al. (2012) and

Srivastava et al. (2014) originally suggested the dropout approach in machine

learning to overcome the overfitting problem. Li et al. (2002) is also among those

who proposed to solve the overfitting problem in the algorithm. To prevent the

occurrence of the overfitting issue, Chen et al. (2014) modified algorithm parame-

ters and iterations by Singular Value Decomposition (SVD), and other researchers

such as Shen et al. (2020), Qin and Li (2006), and Yang et al. (2020) have also

conducted relevant research. Many academics and engineering professionals have

researched of this issue on overfitting issue with the current deep learning CNN

model. A number of solutions, including data expansion enhancement, regulariza-

tion, discarding, and early stop method, have been put forth by Yang et al. (2020),

Cha et al. (2019), Ashiquzzaman et al. (2018), Gong et al. (2017), Cheng et

al. (2019), Zhabg et al. Gong et al. (2017) proposed to improve the CNN based

on the immune system in response to issues including lengthy training times and

overfitting of the CNN model, although the accuracy of this upgraded network

model on the test set is not great (only 81.6%). Yang et al. (2020) introduced

an attribute reduction approach based on visual ranging to handle training data

sets. This algorithm addressed the issue of network overfitting by replacing CNN

fixed weights with a Bayesian weight factor distribution, however its scope of use

is relatively constrained.

Zhang et al. (2018) studied the typical reinforcement learning agent in-depth dur-

ing the model’s training, then performed a comprehensive debate on reinforcement

learning overfitting and generalized it from the viewpoint of inductive bias. Cha

et al. (2019) use synthetic mammograms as training data enhancement, which is

a common technique, to address the overfitting issue of the deep learning breast

mass detection system for synthetic pictures.

The issue of deep learning overfitting has not been addressed particularly well by re-

search on deep learning behavior. A model prediction averaging approach based on
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dropout double probability weighted pooling was proposed by Cheng et al. (2019).

It effectively lowers the error rate and prevents overfitting, however the algorithm’s

pace of convergence slows down after double probability is added. Gonzalez et al.

(2018) introduced the particle swarm optimization (PSO) algorithm to the CNN

model design in order to decrease back propagation of error, avoid lag error and

image over-combination, and improve convergence speed, but the PSO is not theo-

retically supported for the CNN weight update. While increasing the effectiveness

of CNN’s data processing, other techniques have more or less ”side effects” (Qi et

al., 2021).

By scaling SG-MCMC approaches to big models and datasets, the work aims to

make Bayesian inference useful for deep learning (Heek and Kalchbrenner, 2019).

The contributions listed in their work can be divided into three groups. They

was suggested the use of the Adaptive Thermostat Monte Carlo (ATMC) sampler,

which provides better convergence and stability. The amount of momentum and

noise applied to each model parameter is dynamically changed by ATMC. Sec-

ond, a second order numerical integration technique that is already in use and

required for the ATMC sampler was enhanced. The ResNet++ network was cre-

ated by taking the original ResNet architecture, removing BatchNorm, and adding

SELUs, Fixup initialization, and weight normalization. This is because ATMC, like

other SG-MCMC samplers is not directly compatible with stochastic regularization

methods like batch normalization (BatchNorm), Dropout, and weight normaliza-

tion. The Cifar10 benchmark and the large-scale ImageNet benchmark were tested

using a ResNet architecture without batch normalization, and the results showed

that ATMC outperformed a strong optimization baseline in terms of classification

accuracy and test log-likelihood. On the basis of the training data, it was demon-

strated that ATMC is inherently resistant to overfitting and that it offers a more

accurate measure of uncertainty than the optimization baseline.

Popular samplers for approximate inference are stochastic gradient Markov Chain

Monte Carlo (SGHMC) techniques, however they are typically biased. The un-

pleasant truth that SGHMC and other widely used samplers cannot be modified

via rejection because their acceptance probability are zero was brought to light

by Fortuin (2020) in his study. Gradient-Guided Monte Carlo, which generalizes
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Stochastic Gradient Langevin Dynamics (SGLD) and Hamiltonian Monte Carlo,

is one example of a sampler with realizable reverse trajectories (HMC). Then, a

method for creating precise posterior samples solely utilizing stochastic gradients

was developed. This method involved computing the acceptance probabilities of

GGMC across a number of stages.

The posteriors over neural network weights are high dimensional and multimodal.

Each mode typically characterizes a meaningfully different representation of the

data. A research was conducted to replace the traditional decreasing stepsize sched-

ule in SG-MCMC with a cyclical variant (Zhang, 2020). This method was referred

to as Cyclical Stochastic Gradient MCMC (cSG-MCMC) to automatically explore

complex multimodal distributions. This approach is particularly compelling for

Bayesian deep learning, which involves rich multimodal parameter posteriors cor-

responding to meaningfully different representations. A cyclical stepsize schedule

was proposed, where larger steps discover new modes, and smaller steps character-

ize each mode. Cyclical SG-MCMC methods provided more accurate uncertainty

estimation by capturing more diversity in the hypothesis space corresponding to

settings of model parameters. Furthermore, extensive experimental results were ob-

tained, including ImageNet to demonstrate the effectiveness of cyclical SG-MCMC

in learning complex multimodal distributions, especially for fully Bayesian infer-

ence with modern deep neural networks.

The key distinguishing property of a Bayesian approach is marginalization in-

stead of optimization, where represent solutions given by all settings of parameters

weighted by their posterior probabilities, rather than bet everything on a single

setting of parameters. Neural networks are typically underspecified by the data,

and can represent many different but high performing models corresponding to

different settings of parameters, which is exactly when marginalization will make

the biggest difference for accuracy and calibration (Yang et al., 2020).

Wilson and Izmailov (2020) showed that deep ensembles provide an effective mech-

anism for approximate Bayesian marginalization, and propose a related approach

that further improves the predictive distribution by marginalizing within basins of

attraction, without significant overhead. The prior over functions was also investi-
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gated implied by a vague distribution over neural network weights, explaining the

generalization properties of such models from a probabilistic perspective. From this

perspective, results that have been presented as mysterious and distinct to neural

network generalization were explained, such as the ability to fit images with ran-

dom labels, and show that these results can be reproduced with Gaussian processes.

Also, this multimodal approach to Bayesian model averaging, MultiSWAG can en-

tirely alleviate double descent to enable monotonic performance improvements with

increases in model flexibility as well significant improvements in generalization ac-

curacy and log-likelihood over SGD and single basin marginalization.

Recently, there has been much attention in the use of machine learning methods,

particularly deep learning for stock price prediction. A major limitation of con-

ventional deep learning is uncertainty quantification in predictions which affect

investor confidence. Bayesian neural networks feature Bayesian inference for pro-

viding inference (training) of model parameters that provides a rigorous method-

ology for uncertainty quantification in predictions. Markov Chain Monte Carlo

(MCMC) sampling methods have been prominent in implementing inference of

Bayesian neural networks; however certain limitations existed due to a large num-

ber of parameters and the need for better computational resources. The COVID-19

pandemic had a drastic impact in the world economy and stock markets given dif-

ferent levels of lockdowns due to rise and fall of daily infections. It is important

to investigate the performance of related forecasting models during the COVID-19

pandemic given the volatility in stock markets.(Shen et al., 2020)

Id and He (2021) used novel Bayesian neural networks for multi-step-ahead stock

price forecasting before and during COVID-19. The pre-COVID-19 datasets were

examined if they are useful for modelling stock price forecasting during COVID-19.

The results indicated that due to high volatility in the stock-price during COVID-

19, it is more challenging to provide forecasting. However, it was discovered that

Bayesian neural networks could provide reasonable predictions with uncertainty

quantification despite high market volatility during the first peak of the COVID-19

pandemic.

Cranmer et al. (2021) presented a neural network that, trained only on short time
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series of the orbits in compact planetary systems, not only improves on long-term

predictions of previous models based on engineered features but also significantly

reduced the model bias and improved generalization beyond the training set. The

model was designed as a Bayesian neural network (BNN) which naturally incorpo-

rates confidence intervals into its instability time predictions, accounting for model

uncertainty as well as the intrinsic uncertainty due to the chaotic dynamics. The

model, trained directly from short N-body time series of raw orbital elements, is

more than two orders of magnitude more accurate at predicting instability times

than analytical estimators, while also reducing the bias of existing machine learning

algorithms by nearly a factor of three. Despite being trained on compact resonant

and near-resonant three-planet configurations, the model demonstrated robust gen-

eralization to both nonresonant and higher multiplicity configurations, in the latter

case outperforming models fitted to that specific set of integrations. The model

computed instability estimates up to 105 times faster than a numerical integrator,

and unlike previous efforts provides confidence intervals on its predictions. Finally,

unlike previous machine learning models based on decision trees this model is dif-

ferentiable. That is, instability times can be extracted from the model estimates of

the derivatives of the predicted with respect to the parameters defining the orbital

configuration in question. Characterizing drug–protein interactions (DPIs) is cru-

cial to the high-throughput screening for drug discovery. The deep learning-based

approaches have attracted attention because they can predict DPIs without human

trial and error. However, because data labeling requires significant resources, the

available protein data size is relatively small, which consequently decreases model

performance.(Cranmer et al. ,2021)

Kim et al. (2021) proposed two methods to construct a deep learning framework

that exhibits superior performance with a small labeled dataset. At first, transfer

learning was used in encoding protein sequences with a pretrained model, which

trains general sequence representations in an unsupervised manner. Secondly, a

Bayesian neural network was utilized to make a robust model by estimating the

data uncertainty. The resulting model performs better than the previous baselines

at predicting interactions between molecules and proteins. It was also revealed that

the quantified uncertainty from the Bayesian inference is related to confidence and

can be used for screening DPI data points.
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Radev (2021) addressed the problem with a novel combination of epidemiological

modeling with specialized neural networks. The approach entailed two computa-

tional phases: In an initial training phase, a mathematical model describing the

epidemic was used as a coach for a neural network, which acquired global knowl-

edge about the full range of possible disease dynamics. In the subsequent inference

phase, the trained neural network processed the observed data of an actual out-

break and infered the parameters of the model in order to realistically reproduce

the observed dynamics and reliably predict future progression. Moreover, since

the method was fully Bayesian, it was designed to incorporate all available prior

knowledge about plausible parameter values and returns complete joint posterior

distributions over these parameters. Application of the method to the early Covid-

19 outbreak phase in Germany demonstrated that reliable probabilistic estimates

for important disease characteristics coul be obtained, such as generation time,

fraction of undetected infections, likelihood of transmission before symptom onset,

and reporting delays using a very moderate amount of real-world observations.

Nan (2021) applied a Bayesian neural network (BNN) algorithm to build a pre-

dictive model for occupant thermal preference using the ASHRAE Global Ther-

mal Comfort Database II. The results showed that the BNN model outperformed

conventional thermal comfort models such as Predicted Mean Vote (PMV) and

adaptive comfort model. The BNN model tends to produce more confident “pre-

fer cooler” predictions with high possibility and low uncertainty. In contrast, the

BNN model produced less certain predictions for “prefer no change” and “pre-

fer warmer” across all occupants. The findings suggested that linking occupants’

subjective evaluation measures and window opening/closing behavior to thermal

comfort modeling effectively improved predictive performance.

With a focus on solutions depending on variational inference and the use of natural

gradients, Magris and Iosifidis (2023) provided both traditional and contemporary

methodologies for Bayesian inference. They also talked about the use of manifold

optimization, a cutting-edge method for Bayesian learning. They looked at the

distinguishing characteristics of all the methods that were described and provided

pseudo-codes for their application, giving close attention to the practical details

like computing gradients.
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Using mean field variational Bayesian Neural Networks (BNNs), Qihan et al. (2023)

investigated the representational capacity of such BNNs by identifying the notions

that are less likely to be encoded by the BNN. It has been observed and researched

that, in the knowledge representation of an adequately trained neural network, a

very small collection of interacting concepts typically develop, and such concepts

can accurately describe the network output.Because of this, their research shown

that BNNs are less likely to encode complicated concepts than conventional deep

neural networks (DNNs).
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Chapter 3

RESEARCH METHODOLOGY

3.1 CHAPTER OVERVIEW

This chapter explains the Bayesian Neural Network model with the use of activation

function. Other areas discussed include data generation for the study, Evaluation

Metrics for the simulation study and description of the real life data used for the

study.

3.2 DIFFERENT ACTIVATION FUNCTIONS

There are many activation functions available for a neural network to use. These

are called homogenous transfer functions(HOTFs). They are

(1) Sigmoid

(2) hyperbolic tangent(TANH)

(3) hyperbolic tangent sigmoid(TANSIG)

(4) symmetric saturating linear(SATLINS)

(5) Rectified Linear Unit(ReLU)

The choice of the activation functions used in this research is based on preliminary

investigations of ranking of activation functions by the Error Variance(Udomboso,

2014). The authour observed that the best performances of activation functions

came from:

(1) Hyperbolic Tangent activation function (TANH)

The Tanh function (also ’tanh’ and ’TanH’) is another name for the hyperbolic

tangent activation function. It shares the same S-shape with the sigmoid activation
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function. Any real value may be used as an input, and the function returns values

between -1 and 1.

g(x) =
ex − e−x

ex + e−x
(3.1)

It squashes a real-valued number to the range [-1, 1].

(2) Hyperbolic Tangent Sigmoid activation function (TANSIG)

Another common and mostly utilized activation function is the tanh function. This

is a nonlinear function, characterized in the scale of values (-1, 1). One thing to

make clear is that the gradient is better for tanh than sigmoid (the derivatives are

steeper). Settling between sigmoid and tanh will be based on the gradient strength

prerequisite. Like the sigmoid, tanh also has the missing slope constraint. The

function is specified by the formula:

g(x) =
2

1− e−2x
− 1 (3.2)

(3) Symmetric Saturating Linear activation function (SATLINS)

SATLINS function appears to be also capable of use as the activation function for

nonlinear system modeling aside providing the smaller median of the final error

function value over all tested numbers of neurons in topologies.

g(x) =



−1, x < −1

x, −1 ≤ x ≤ 1

1, x > 1

(3.3)

respectively.

(4) Sigmoid activation function

A mathematical function called the sigmoid function produces an S-shaped curve

known as a sigmoidal curve. The earliest and most popular activation function is

this one. This makes the model logistic and compresses the input to any number
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between 0 and 1. This function is known as a special case of logistic function de-

fined by the following formula:

f(x) =
1

1 + e−x
(3.4)

(5) Rectified Linear Unit (ReLU) activation function

One activation function that is frequently used is the rectified linear unit (ReLU).

The function is defined by the following formula

g(x) =


0, when x < 0

x, when x >= 0

(3.5)

The scale of the result is between 0 and infinity. ReLU finds usage in computer

vision and speech identification using deep neural networks.

3.3 HETEROGENEOUS ACTIVATION FUNC-

TIONS

Further investigation conducted on the choice of convolution revealed that the best

convolutions arose from the best three individual transfer functions. On the whole,

in the overall ranking, it was found out that best performance was obtained in the

convolution of the Symmetric Saturating Linear transfer function and the Hyper-

bolic Tangent transfer function (SATLINS-TANH), followed by the convolution of

the Symmetric Saturating Linear transfer function and the Hyperbolic Tangent Sig-

moid activation function (SATLINS-TANSIG)(Udomboso, 2014). The summary of

the derived function is given as:

(1) Symmetric Saturating Linear Hyperbolic Tangent (SSLHT)

g(x) =


log( e

x−e−x

ex+e−x ), for x < −1

(x+ 1)log(ex + e−1)−1, for − 1 ≤ x ≤ 1

log( e
x−e−x

ex+e−1 ), for x > 1

(3.6)

The function above is the derived HETTF for the Symmetric Saturated Linear
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transfer function and the Hyperbolic Tangent transfer function.

(2) Symmetric Saturating Linear Hyperbolic Tangent Sigmoid (SSLHTS)

g(x) =



∑∞
p=1

e−2px

p
−
∑∞

p=1
e2px

p
− (x+ r), for x < −1

(2x2 + 3x+ 1/2)− x(
∑∞

p=1
e−2px

p
−
∑∞

p=1
e−2px

p
), for − 1 ≤ x ≤ 1

(x− 1)−
∑∞

p=1
e−2px

p
+
∑∞

p=1
e−2px

p
, for x > 1

(3.7)

The function above is the derived HETTF for the Symmetric Saturated Linear

transfer function and the Hyperbolic Tangent Sigmoid transfer function. The

derivation of the two heterogeneous activation functions are discussed below

(i) satslins⊗ tanh = f1(n)⊗ f2(n)

(i1) satslins⊗ tansig = f1(n)⊗ f2(n)

3.4 SYMMETRIC SATURATING LINEARAND

HYPERBOLIC TANGENT

(i) Let

f(n) = f1(n)⊗ f2(n) =

∫ b

a

f1(n−m)f2(m)dm (3.8)

For n < −1, f1(n) = −1, which implies also that f1(n−m) = −1.

Also from (3.1.12),

f2(m) =
en − e−n

en + e−n
− d(en − e−n)

en + e−n
(3.9)

Therefore,

f1(n)⊗ f2(n) =

∫ −p

r

(−1)

(
d|en − e−n|
en + e−n

)
dm, r < n < −1 (3.10)

= −
∫ n

−1

d(en − e−n)

en + e−n
dm = −log(en + e−n)
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= log(en + e−n)−1

= log

(
d(er − e−r)

en + e−n

)
(3.11)

(ii) Similarly, for −1 ≤ n ≤ 1, f1(n) = n, which implies that f1(n−m) = n−m,

such that −1 ≤ m < n.

Therefore,

f1(n)⊗ f2(n) =

∫ n

−1

f1(n−m)f2(m)dm (3.12)

(iii) Also, for n > 1, f1(n) = a = 1. This implies that f1(n−m) = 1.

Therefore,

f1(n)⊗ f2(n) =
∫ n

1
f1(n−m)f2(m)dm

=
∫ n

1
1
(

en−e−n

en+e−n

)
dm

=
∫ n

1
d(en−e−n)
en+e−n dm

= log(en + e−n)|n1

= log

(
en + e−n

e+ e−1

)
(3.13)

The summary of he derived function is given as

f(n) =



log
(

er+e−r

e+e−1

)
, for n < −1

(n+ 1)log(e+ e−1)−1, for −1 ≤ n ≤ 1

log
(

en+e−n

e+e−1

)
, for n > 1

(3.14)

Equation (3.14) is the derived HETTF for the Symmetric Saturated Linear activa-

tion function and the Hyperbolic Tangent transfer function.
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3.5 SYMMETRIC SATURATING LINEARAND

HYPERBOLIC TANGENT-SIGMOID

(i) For n < −1, f1 = a = −1. This implies that f1(n−m) = −1.

f1(m) =
2

1− e−2m
− 1− 1 + e−2m

1− e−2m

Let

f(n) = f1(n)⊗ f2(n) =

∫ n

−r

f1(n−m)f2(m) dm

f1(n)⊗ f2(n) =

∫ n

−r

(−1)

(
2

1− e−2m
− 1

)
dm

=

∫ n

−r

(
1− 2

1− e−2m

)
dm− 2

∫ n

−r

1

1− e−2m
dm

= m|n−p − 2

∫ n

−r

(1 + e−2m)−1 dm = (n+ r)− 2

∫ n

−r

(1 + e−2m + e−4m + . . . ) dm

= (n+ r)− 2

[
m− e−2m

2
− e−4m

4
− . . .

]n
−r

= (n+r)−2

(
(n− e−2n

2
− e−4n

4
− e−6n

6
− . . . )

)
−
[
−2

(
(−r − e−2r

2
− e−4r

4
− e−6r

6
− . . . )

)]

=

(
−n+ e−2n +

e−4n

4
+

e−6n

6
+

e−8n

8
+ . . .

)
+

(
−r + e−2r − e−4r

4
− e−6r

6
− e−8r

8
− . . .

)

= (2n− n− 2− 1)−
∞∑
p=1

e−2pm

p
+

∞∑
p=1

e−2p

p

= (n− 1)−
∞∑
p=1

e−2pm

p
+

∞∑
p=1

e−2p

p
(3.15)
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The summary of the derived function is given as

f(n) =



∑∞
p=1

e−2pn

p
+
∑∞

p=1
e−2pr

p
− (n+ r), n < −1

(2n2 + 3n+ 1
2
)− n

(∑∞
p=1

e−2pm

p
+
∑∞

p=1
e−2p

p

)
, −1 ≤ n ≤ 1

(n− 1)
∑∞

p=1
e−2pm

p
+
∑∞

p=1
e−2p

p
, n > 1

(3.16)

Equation (3.16) is the derived HETTF for the Symmetric Saturated Linear transfer

function and the Hyperbolic Tangent Sigmoid transfer function.

3.6 BAYESIAN NEURAL NETWORK MODEL

The statistical neural network model proposed by Anders (1996) is given as

y = f(X,w) + e (3.17)

where y is the dependent variable, X = (x0 = 1, x1, ..., xn ) is a vector of indepen-

dent variables,

w = (α, β, γ) is the network weight,

α is the weight of the input unit,

β is the weight of the hidden unit, and

γ is the weight of the output unit, and

ei is the stochastic term that is normally distributed (that is, ei ∼ N(0, σ2In)).

The assumptions of the statistical neural network are the same as the usual re-

gression models. Basically, f(X,w) (Anders, 1996) is the artificial neural network

function, expressed as

f(X,w) = αX +
H∑

h=1

βhg(
l∑

i=0

γhixi) (3.18)

where g(.) is the homogenous transfer function(HOMTF),

X is a set of input data and

y is a set of output data.

h = 1, 2,...,H is the number of hidden units.
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i = 0, 1,...,I is the number of input units.

Putting eqn(3.2) in eqn(3.1) gives the homogenous SNN (HOMSNN) model.

Given a convoluted form of the artificial neural network function given by Anders

(1996) using product convolution:

f(X,w) = αX +
H∑

h=1

βh[g1(
l∑

i=0

γhixi)g2(
l∑

i=0

γhixi)] (3.19)

where g1(.) and g2(.) are transfer functions, which is generally known as heteroge-

nous transfer function(HETTF).

Equation (3.3) above is called the heterogenous SNN (HETSNN) model.

Consider random variables y1, · · · , yN such that :

yi =
M∑
j=1

βjΨ(XT
i γj) + ei = βTηi(γ) + ei, (3.20)

where;

β = (β1, · · · , βM)T ;

Xi = (xi1, · · · , xip)
T ; and

ηi(γ) = Ψ(XT
i γ1), · · · ,Ψ(XT

i γM))T , i = 1, · · · , N

Also, the errors ei are assumed to be iid N(0, σ2I). The regression part of the model

can be identified with the feedforward neural network. The Xi are the inputs, M

is the number of hiddden nodes (here assumed to be known), and βj are the weighs

attached to the inputs for node j(j = 1, · · · ,M), and Ψ is the activation function.

We write θ = (y1, · · · , yN)T .
At the first stage of the hierarchical prior, β, γ1, · · · , γM are mutually independent

with β ∼ N(µβ1M , σ2
βIM) and γ1, · · · , γM

iid∼ N(µγ, Sγ).

At the second stage, the prior parameters µβ, µγ, σ
2, σ2

β, and Sγ are mutually in-

dependent with µβ ∼ N(aβ, Aβ), µγ ∼ Np(aγ, Aγ), σ
2 ∼ IG(cσ/2, cσCσ/2), σ

2
β ∼

IG(cβ/2, cβCβ/2), and Sγ ∼ IW (cγ, c
−1
γ C−1

γ ). Here, IG and IW denote the inverse

gamma and inverse Wishart distributions.

Specifically, σ2
β has pdf

f(σ2
β) ∝ exp

(
−cβCβ

2σ2
β

)
(σ2

β)
−cβ/2−1 (3.21)

27



and Sγ has pdf

f(Sγ) ∝ |Sγ|−(cγ+p+1)/2 exp

[
−1

2
tr(S−1

γ cγCγ)

]
(3.22)

The selection of priors is usually problem-specific. Ideally, one would like to elicit

these priors from past history. For this study, this was done for µβ, µγ, σ
2, σ2

β, and

Sγ.

The joint posterior of θ, γ, β, µβ, µγ, σ
2, σ2

β, and Sγ, given y, is:

f(θ, γ, β, µβ, µγ, σ
2, σ2

β, Sγ|y) (3.23)

∝
N∏
i=1

[
exp

{
ϕ−1
i (θiyi − κ(θi))

}]
(σ2)−N/2 (3.24)

× exp

[
−(2σ2)−1

N∑
i=1

(θi − ηTi (γ)β)
2

]

× (σ2
β)

−M/2 exp[−∥β − µβ1M∥2/(2σ2
β)]

× |Sγ|M/2 exp

[
−1

2

M∑
j=1

(γj − µγ)
TS−1

γ (γj − µγ)

]

× exp

[
−(2Aβ)

−1(µβ − aβ)
2 − 1

2
(µγ − aγ)

TA−1
γ (µγ − aγ)

]
× exp[−(cσCσ)/(2σ

2)](σ2)−cσ/2−1

× exp[−(cβCβ)/(2β
2)](σ2

β)
−cβ/2−1

× |Sγ|−(cγ+p+1)/2 exp

[
−1

2
tr(S−1

γ cγCγ)

]
.

One of the objectives is to find the posterior distribution of θ given y, and use

this for finding the predictive distribution of the future unobserved yu given the

observed y. This is obtained by the formula:

f(yu|y) =
∫

f(yu|θ)f(θ|y)dθ (3.25)

However, the posterior f(θ|y) is analytically intractable, because its evaluation

requires high-dimensional numerical integration. Thus, the Gibbs sampling is used

to generate samples from this posterior. Some of the full conditionals needed in

this proce dure are available only up to unknown normalizing constants, and the

study used either a regular Metropolis-Hastings algorithm or the adaptive rejection

sampling procedure of Gilks and Wild (1992) to sample from these conditionals.

These full conditionals are as follows:
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(a) β|θ, γ, µβ, µγ, σ
2, σ2

β, Sγ, y ∼ N(Kβ, Hβ)

where

Kβ = (σ−2

N∑
i=1

ηi(γ)η
T
i (γ) + σ−2

β IM)−1 × (σ−2

N∑
i=1

θiηi(γ) + σ−2
β µβ1M)

Hβ = σ−2

N∑
i=1

ηi(γ)η
T
i (γ) + σ−2

β IM)−1

(b)

µβ|θ, β, γ, µγ, σ
2, σ2

β, Sγ, y

∼ N

[
(Mσ−2

β + A−1
β )−1

(
σ−2
β

M∑
j=1

βj + A−1
β aβ

)
,

(Mσ−2
β + A−1

β )−1
]
;

(c)

µγ|θ, β, γ, µβ, σ
2, σ2

β, Sγ, y

∼ Np

[
(MS−1

γ + A−1
γ )−1

(
S−1
γ

M∑
j=1

γj + A−1
γ aγ

)
,

(MS−1
γ + A−1

γ )−1
]
;

(d)

σ2|θ, β, γ, µβ, µγ, σ
2
β, Sγ, y

∼ IG

(
N + cσ

2
,

∑N
i=1(θi − ηTi (γ)β)

2 + cσCσ

2

)
;

(e)

σ2
β|θ, β, γ, µβ, µγ, σ

2, Sγ, y

∼ IG

(
M + cβ

2
,
∥β − µβ1M∥2 + cβCβ

2

)
;
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(f)

Sγ|θ, β, γ, µβ, µγ, σ
2, σ2

β, y

∼ IW

M + cγ,

(
cγCγ +

M∑
j=1

(γj − µj)(γj − µγ)
T

)−1
 ;

(g)

π(γ|θ, β, µβ, µγ, σ
2, σ2

β, Sγ, y) ∝ exp[−1

2
{Fγ +Mγ] (3.26)

where

Fγ = −1

2

N∑
i=1

(θi − ηTi (γ)β)
2 (3.27)

Mγ =
M∑
j=1

(γj − µγ)
TS−1

γ (γj − µγ). (3.28)

The pdf’s given in (a)-(f) are standard, and it is easy to generate samples from

them. But this is not so for the pdf’s given in (g). Generating samples from (g) is

even more complicated, and requires Metropolis-Hastings updates at every step.

3.7 DATA GENERATION

The data will be generated using:

y = βx+ 0.3sin(2π(γx+ ϵ)) + ϵ (3.29)

where ϵ ∼ N(0, 0.02), x ∼ N(0,1), β = 1.0 and γ = 1.0

(1) The results are based on the prediction and model selection criterion given the

level of hidden neuron at different sample sizes. (2) The hidden neuron used is

2 while the sample sizes include 50, 100, 200, 500, and 1000, 2000, 5000, 10000,

20000 and 50000. That is, taking each sample size, statistics will be conducted at

different levels of the training sets(70%, 80% and 90%).

(3) Real life data is also used in this study.

(4) R package was used throughout the study for analysis.

The parameters of the model are obtained using Bayesian approach and the sensi-

tivity of the estimators are assessed with the following techniques,
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(1) Posterior Mean Weight (2) Posterior Standard Deviation (3) Numerical Stan-

dard Error (NSE).

3.8 EVALUATION METRICS FOR SIMULA-

TION DATA

(1)Training error: Training error is calculated by using the same data for training

the model and calculating its error rate. Calculating the error rate for a predictive

model is called model validation. It is important to validate our model before they

go into production in order to decide if the expected model performance will be

good enough for production. The predictive performance of the model is obtained

by comparing the predicted values with the true values for Y. When the model is

applied to the data it was trained on, the training error is being calculated. It is

calculated as:

TrainError =
1

n

n∑
i=1

|YT − ŶT | (3.30)

where

YT is the trained data

ŶT is the predicted value for the trained data.

(2)Mean Square Error: This measures the average of the squares of the errors,

that is, the average squared difference between the estimated value and the actual

value. If a vector of n predictions is generated from a sample of n data points on

all variables, and Y is the vector of observed values of the variable being predicted,

with Ŷ being the predicted values, then the MSE is computed as

MSE =
1

n

n∑
i=1

(Yt − Ŷt)
2 (3.31)

where

Yt is the test data

Ŷt is the predicted value for the test data.

This MSE is computed on test data that are not used in estimating the model,

because they were held back for this purpose. The MSE here is often called the

test MSE.
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(3)Mean Absolute Error: is the average over the sample of the absolute values of

the differences between model predicted values and the test data. It is computed as

MAE =
1

n

n∑
i=1

|Yt − Ŷt| (3.32)

where

Yt is the test data

Ŷt is the predicted value for the test data.
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3.9 APPLICATION TO TERRORISM DATA

The dataset used is a primary data collected via an electronic medium, designed

in a Google form and distributed randomly to different platforms in the six geopo-

litical zones (North east, North west, North Central, South East, South West

and South South) in Nigeria. The form (which is accessible through the link:

www.https://forms.gle/gQ3idgnUT5kk8gx47) was designed in such a way that each

respondent’s personal information was not traced to their responses. This was done

to keep the confidentiality of the respondents and for obtaining exactness of correct

information provided during the longitudinal survey. For this study, 508 responses

are received was received for the analysis for this study.

Different variables are gathered in the data collection. The nature of the terrorist

attack is categorized into different levels of attack, namely: armed assault, as-

sassination, bombing/explosion, facility/infrastructure attack, hijacking, unarmed

assault and unknown type. Obviously, terrorist attack cannot be achievable with-

out the application of some forms of weapons. The dataset also shows the targets of

the terrorists (educational institution, government, media, military, NGO, police,

private business organization, private citizen and property, religious institutions,

and political parties). The perpetrators’ information which include name, number

of perpetrators, and so on, are also included in the data. And finally, other in-

formation also gathered include the number of people injured or died, number of

perpetrators injured or killed, the success of the attack, time of the attack, date,

vicinity and city of the attack, frequency of the attack and the number of kid-

napped victims.

3.10 MODEL VARIABLES FOR THE TERROR-

ISM DATA

The target or dependent variables are:

(1) The nature of the terrorist attack: armed assault, assassination, bombing/explosion,

facility/infrastructure attack, hijacking, unarmed assault and Kidnapping.
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(2) suicide attack(do people die): Yes or NO.

The variables used as feature variables in the study are:

(1) Weapon Type: Fake Weapons, Firearms, Melee like knife, Nuclear/Explosives,

Sabotage Equipment and so on. (2) Number of perpetrators (3) The targets of

the terrorists : educational institution, government, media, military, NGO, po-

lice, private business organization, private citizen and property, religious institu-

tions, and political parties). (4) Attack type: armed assault, assassination, bomb-

ing/explosion, facility/infrastructure attack, hijacking, unarmed assault and Kid-

napping. (5) State of the incidence (6) Other information gathered in the study

are number of people injured or died, number of perpetrators injured or killed,

the success of the attack, time of the attack, date, vicinity and city of the attack,

frequent of the attack, number of kidnapped victims and so on.

3.11 MODEL PERFORMANCE FOR TERROR-

ISM DATA

The performance of the models are on these four criteria: Accuracy, Precision,

Recall and F1-score. The mathematical expressions for the criteria are discussed

below:

� Accuracy = (TN + TP)/ (TN + TP + FP + FN)

� Precision = TP / (TP + FP)

� Recall = TP / (TP + FN)

� F1-score = 2 x (Precision x Recall)/ (Precision + Recall)

where TN, TP, FN and FP are True Negative, True Positive, False Negative and

False Positive respectively. These are obtained in the confusion matrix and then

used to compute the performance criteria. The confusion matrix is a performance

measurement in machine learning classification problems.
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Chapter 4

RESULTS AND DISCUSSION

4.1 CHAPTER OVERVIEW

This chapter discusses the analyses and results from the simulations and the real life

data on terrorism attack. The purpose of using the data is to verify the precision

of the heterogeneous models of the Bayesian neural network (BNN). The results

are based on the prediction and model selection criterion at different data trainings

and sample sizes. The parameter estimates, asymptotic performance of the derived

bayesian estimators for the homogeneous(HOMAFs) and heterogeneous activation

function (HETAFs) are presented in this section. The result for the real life data

is also presented.

The results presented are categorized under different activation functions, data

trainings percentages and sample sizes. The hidden neuron of 2 is used while the

sample sizes are 50, 100, 200, 500, 1000, 5000, 10000, 20000 and 50000. That is,

taking each sample size, statistics are computed at the level of the choice of hidden

neuron. The intention is to see the behavior of the network at different variables.

Three primary transfer functions (HOTTFs), as well as two derived activation func-

tions (HETTFs) arising from the convolution of the HOTTFs, are used, namely;

(i) ReLU activation function (ReLU)

(ii) Sigmoid activation function (Sigmoid)

(iii) Hyperbolic Tangent sigmoid activation function (TANSIG)

(iv) Symmetric Saturated Linear and Hyperbolic Tangent activation function (SSLHT)

(v) Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid activation func-

tion (SSLHTS)

Training sets of 70, 80 and 90 are used for the simulation study. The results

show the posterior weights for the parameters, asymptotic performance and the
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performance between the activation functions are judged using the mean square

error(mse), mean absolute error(mae) and train error.
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4.2 BAYESIAN RESULTS FOR ReLU ACTI-

VATION FUNCTION

The results for the parameters of the model using Bayesian approach are displayed

in this sesction. These results are tabled under the headings of Posterior Mean

Weight, Posterior Standard Deviation and the Numerical Standard Error (NSE).

The results are obtained for the ReLU activation functions at 70%, 80% and 90%

training sets and at sample size of 50, 100, 200, 500, 1000, 5000, 10000, 20000 and

50000.
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Table 4.1: Summary Table of Posterior Weight, Standard Deviation and
Numerical Standard Error for ReLU activation function at N=50.

Training set Parameters results pweight results pstd results nse

β 0.4275 1.0581 0.0335
γ 0.2165 1.2154 0.0384
µβ 0.2187 0.5067 0.016

70 µγ 0.4158 0.6875 0.0217
σ 0.3526 0.0664 0.0021
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.2322 0.2373 0.0075

β 0.3159 1.0041 0.0318
γ 0.1797 1.1374 0.036

80 µβ 0.286 0.495 0.0157
µγ 0.4158 0.6875 0.0217
σ 0.2845 0.0536 0.0017
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.4492 0.4592 0.0145

β 0.2812 0.9831 0.0311
γ 0.17 1.1059 0.035

90 µβ 0.3302 0.4874 0.0154
µγ 0.4158 0.6875 0.0217
σ 0.2615 0.0493 0.0016
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.656 0.6706 0.0212
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Figure 4.1: Posterior weight estimates of beta and gamma at N=50 using
ReLU Activation function
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Table 4.1 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 50. The table shows that β has a posterior weight of

0.4275, 0.3159 and 0.2812 and γ shows 0.2165, 0.1797 and 0.17 at training sets of

70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for both β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 1.0581, 1.0041

and 0.9831 and γ also has a posterior standard deviation of 1.2154, 1.1374 and

1.1059 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0335, 0.0318

and 0.0311 and γ also shows NSE values of 0.0384, 0.036 and 0.035 at training sets

of 70%, 80% and 90% respectively. This implies a decreasing NSE values for both

β and γ as the training sets increases.

Figure 4.1 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50.
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Table 4.2: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=100.

Training set Parameters results pweight results pstd results nse

β 0.2302 0.9577 0.0303
γ 0.3208 1.0584 0.0335

70 µβ 0.4421 0.4703 0.0149
µγ 0.4167 0.6872 0.0217
σ 1.4905 0.2024 0.0064
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0129 0.0133 0.0004

β 0.2811 0.9385 0.0297
γ 0.346 1.0484 0.0332

80 µβ 0.4709 0.4658 0.0147
µγ 0.4167 0.6872 0.0217
σ 1.7579 0.2387 0.0075
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0108 0.0111 0.0004

β 0.242 0.8368 0.0265
γ 0.4446 0.9412 0.0298

90 µβ 0.5182 0.4575 0.0145
µγ 0.4167 0.6872 0.0217
σ 2.3166 0.3146 0.0099
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.008 0.0083 0.0003
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Figure 4.2: Posterior Mean weights of beta and gamma at N=100 using
ReLU Activation function
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Table 4.2 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 100. The table shows that β has a posterior weight

of 0.2302, 0.2811 and 0.242 and γ shows 0.3208, 0.346 and 0.4446 at training sets of

70%, 80% and 90% respectively. The result shows an consistent posterior weights

for both β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.9577, 0.9385

and 0.8368 and γ also has a posterior standard deviation of 1.0584, 1.0484 and

0.9412 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0303, 0.0297

and 0.0265 and γ also shows NSE values of 0.0335, 0.0332 and 0.0298 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.2 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 100.
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Table 4.3: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=200.

Training set Parameters results weight results pstd results nse

β 0.4305 0.9123 0.0288
γ 0.1835 0.8303 0.0263
µβ 0.5696 0.4439 0.014

70 µγ 0.4191 0.6868 0.0217
σ 6.6677 0.6462 0.0204
σβ 1.5153 0.7588 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0014 0.0014 0.00E+00

β 0.3613 0.8604 0.0272
γ 0.1568 0.7871 0.0249
µβ 0.6034 0.438 0.0139

80 µγ 0.4191 0.6868 0.0217
σ 8.8793 0.8606 0.0272
σβ 1.5153 0.7588 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.001 0.0011 0.00E+00

β 0.3341 0.8051 0.0255
γ 0.1533 0.7308 0.0231
µβ 0.6222 0.4348 0.0137

90 µγ 0.4191 0.6868 0.0217
σ 11.7606 1.1399 0.036
σβ 1.5153 0.7588 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0008 0.0008 0.00E+00
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Figure 4.3: Posterior Mean weights of beta and gamma at N=200 using
ReLU Activation function

45



Table 4.3 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 200. The table shows that β has a posterior weight

of 0.4305, 0.3613 and 0.3341 and γ shows 0.1835, 0.1568 and 0.1533 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for both β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.9123, 0.8604

and 0.8051 and γ also has a posterior standard deviation of 0.8303, 0.7871 and

0.7308 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0288, 0.0272

and 0.0255 and γ also shows NSE values of 0.0263, 0.0249 and 0.0231 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.3 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 200.
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Table 4.4: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=500.

Training set Parameters results pweight results pstd results nse

β 0.2359 0.5571 0.0176
γ 0.1666 0.4587 0.0145
µβ 0.7181 0.4193 0.0133

70 µγ 0.4283 0.6905 0.0218
σ 38.8611 2.4032 0.076
σβ 1.5233 0.7584 0.024
Sγ 0.0049 0.0024 1.00E-04
π 1.00E-04 0.0001 0.00E+00

β 0.2078 0.5228 0.0165
γ 0.1533 0.428 0.0135
µβ 0.7299 0.4172 0.0132

80 µγ 0.4283 0.6905 0.0218
σ 50.7201 3.1366 0.0992
σβ 1.5233 0.7584 0.024
Sγ 0.0049 0.0024 1.00E-04
π 1.00E-04 1.00E-04 0.00E+00

β 0.1834 0.4922 0.0156
γ 0.1403 0.4012 0.0127
µβ 0.739 0.4155 0.0131

90 µγ 0.4283 0.6905 0.0218
σ 63.405 3.9211 0.124
σβ 1.5233 0.7584 0.024
Sγ 0.0049 0.0024 1.00E-04
π 1.00E-04 1.00E-04 0.00E+00
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Figure 4.4: Posterior Mean weights of beta and gamma at N=500 using
ReLU Activation function
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Table 4.4 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 500. The table shows that β has a posterior weight

of 0.2359, 0.2078 and 0.1834 and γ shows 0.1666, 0.1533 and 0.1403 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for both β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.5571, 0.5228

and 0.4922 and γ also has a posterior standard deviation of 0.4587, 0.428 and 0.4012

at training sets of 70%, 80% and 90% respectively. This implies that both β and

γ produced decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0176, 0.0165

and 0.0156 and γ also shows NSE values of 0.0145, 0.0135 and 0.0127 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.4 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 500.
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Table 4.5: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=1000.

Training set Parameters results pweight results pstd results nse

β 0.4872 0.3919 0.0124
γ 0.2 0.3196 0.0101
µβ 0.7722 0.4084 0.0129

70 µγ 0.4281 0.692 0.0219
σ 62.3068 2.7322 0.0864
σβ 1.5248 0.7568 0.0239
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4011 0.3649 0.0115
γ 0.1901 0.2972 0.0094
µβ 0.7791 0.4073 0.0129

80 µγ 0.4281 0.692 0.0219
σ 81.2728 3.5639 0.1127
σβ 1.5248 0.7568 0.0239
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4752 0.3468 0.011
γ 0.1838 0.2826 0.0089
µβ 0.7842 0.4064 0.0129

90 µγ 0.4281 0.692 0.0219
σ 102.5323 4.4961 0.1422
σβ 1.5248 0.7568 0.0239
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00
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Figure 4.5: Posterior Mean weights of beta and gamma at N=1000 using
ReLU Activation function
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Table 4.5 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 1000. The table shows that β has a posterior weight

of 0.4872, 0.4011 and 0.4752 and γ shows 0.2, 0.1901 and 0.1838 at training sets of

70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for both β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.3919, 0.3649

and 0.3468 and γ also has a posterior standard deviation of 0.3196, 0.2972 and

0.2826 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0124, 0.0115

and 0.011 and γ also shows NSE values of 0.0101, 0.0094 and 0.0089 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.5 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 1000.
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Table 4.6: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=5000.

Training set Parameters results pweight results pstd results nse

β 0.3412 0.1837 0.0058
γ 0.271 0.1743 0.0055
µβ 0.8196 0.4032 0.0127

70 µγ 0.4286 0.6976 0.0221
σ 85.0329 5.6284 0.178
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.3642 0.1713 0.0054
γ 0.266 0.1627 0.0051
µβ 0.8207 0.4031 0.0127

80 µγ 0.4286 0.6976 0.0221
σ 70.9248 7.3244 0.2316
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.3735 0.162 0.0051
γ 0.264 0.154 0.0049
µβ 0.8216 0.403 0.0127

90 µγ 0.4286 0.6976 0.0221
σ 69.7376 9.2756 0.2933
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00
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Figure 4.6: Posterior Mean weights of beta and gamma at N=5000 using
ReLU Activation function
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Table 4.6 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 5000. The table shows that β has a posterior weight

of 0.3412, 0.3642 and 0.3735 and γ shows 0.271, 0.266 and 0.264 at training sets of

70%, 80% and 90% respectively. The result shows an increasing posterior weights

for β and a decreasing posterior weights for γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1837, 0.1713

and 0.162 and γ also has a posterior standard deviation of 0.1743, 0.1627 and 0.154

at training sets of 70%, 80% and 90% respectively. This implies that both β and

γ produced decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0058, 0.0054

and 0.0051 and γ also shows NSE values of 0.0055, 0.0051 and 0.0049 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.6 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 5000.
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Table 4.7: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=10000.

Training set Parameters results pweight results pstd results nse

β 0.4094 0.1379 0.0044
γ 0.255 0.1319 0.0042
µβ 0.8238 0.4029 0.0127

70 µγ 0.4286 0.6976 0.0221
σ 95.8872 6.9248 0.219
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4202 0.1284 0.0041
γ 0.252 0.1231 0.0039
µβ 0.8244 0.4029 0.0127

80 µγ 0.4286 0.6976 0.0221
σ 89.8349 9.0746 0.287
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.428 0.1209 0.0038
γ 0.249 0.1161 0.0037
µβ 0.8249 0.4029 0.0127

90 µγ 0.4286 0.6976 0.0221
σ 82.0568 11.4936 0.3635
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00
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Figure 4.7: Posterior Mean weights of beta and gamma at N=10000 using
ReLU Activation function
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Table 4.7 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 10000. The table shows that β has a posterior weight

of 0.4094, 0.4202 and 0.428 and γ shows 0.255, 0.252 and 0.249 at training sets of

70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1379, 0.1284

and 0.1209 and γ also has a posterior standard deviation of 0.1319, 0.1231 and

0.1161 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0044, 0.0041

and 0.0038 and γ also shows NSE values of 0.0042, 0.0039 and 0.0037 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.7 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 10000.
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Table 4.8: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=20000.

Training set Parameters results pweight results pstd results nse

β 0.4535 0.1076 0.0034
γ 0.242 0.1056 0.0033
µβ 0.8263 0.4029 0.0127

70 µγ 0.4286 0.6976 0.0221
σ 1430.3183 14.1241 0.4466
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4574 0.1006 0.0032
γ 0.243 0.0987 0.0031
µβ 0.8266 0.4029 0.0127

80 µγ 0.4286 0.6976 0.0221
σ 1870.4128 18.47 0.5841
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4601 0.0946 0.003
γ 0.245 0.0928 0.0029
µβ 0.8268 0.4029 0.0127

90 µγ 0.4286 0.6976 0.0221
σ 2366.5608 23.3693 0.739
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00
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Figure 4.8: Posterior Mean weights of beta and gamma at N=20000 using
ReLU Activation function

60



Table 4.8 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 20000. The table shows that β has a posterior weight

of 0.4535, 0.4574 and 0.4601 and γ shows 0.242, 0.243 and 0.245 at training sets of

70%, 80% and 90% respectively. The result shows an increasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1076, 0.1006

and 0.0946 and γ also has a posterior standard deviation of 0.1056, 0.0987 and

0.0928 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0034, 0.0032

and 0.003 and γ also shows NSE values of 0.0033, 0.0031 and 0.0029 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.8 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 20000.
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Table 4.9: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using ReLU activation function at
N=50000.

Training set Parameters results pweight results pstd results nse

β 0.4755 0.0646 0.002
γ 0.2371 0.0642 0.002
µβ 0.8277 0.403 0.0127

70 µγ 0.4286 0.6976 0.0221
σ 3038.9478 18.9794 0.6002
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.477 0.0603 0.0019
γ 0.2370 0.0599 0.0019
µβ 0.8278 0.403 0.0127

80 µγ 0.4286 0.6976 0.0221
σ 3971.4881 24.8034 0.7844
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00

β 0.4781 0.0568 0.0018
γ 0.2364 0.0565 0.0018
µβ 0.8279 0.403 0.0127

90 µγ 0.4286 0.6976 0.0221
σ 5005.6174 31.262 0.9886
σβ 1.523 0.7498 0.0237
Sγ 0.0048 0.0023 1.00E-04
π 0.00E+00 0.00E+00 0.00E+00
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Figure 4.9: Posterior Mean weights of beta and gamma at N=50000 using
ReLU Activation function
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Table 4.9 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using ReLU activation

function at the sample size of 50000. The table shows that β has a posterior weight

of 0.4755, 0.477 and 0.4781 and γ shows 0.2371, 0.2370 and 0.2364 at training sets

of 70%, 80% and 90% respectively. The result shows an increasing posterior weights

for β and a decreasing posterior weights for γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0646, 0.0603

and 0.0568 and γ also has a posterior standard deviation of 0.0642, 0.599 and 0.0565

at training sets of 70%, 80% and 90% respectively. This implies that both β and

γ produced decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.002, 0.0019 and

0.0018 and γ also shows NSE values of 0.002, 0.0019 and 0.0018 at training sets of

70%, 80% and 90% respectively. This implies a decreasing NSE values for both β

and γ as the training sets increases.

Figure 4.9 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50000.
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4.3 BAYESIAN RESULTS FOR SIGMOID AC-

TIVATION FUNCTION

The results for the parameters of the model using Bayesian approach with sigmoid

activation function are displayed in this sesction. These results are tabled under

the headings of Posterior Mean Weight, Posterior Standard Deviation and the Nu-

merical Standard Error (NSE). The results are obtained for the Sigmoid activation

functions at 70%, 80% and 90% training sets and at sample size of 50, 100, 200,

500, 1000, 5000, 10000, 20000 and 50000.
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Table 4.10: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=50.

Training set Parameters results pweight results pstd results nse

β 0.345 0.4756 0.1504
γ 0.1976 0.4888 0.1546
µβ 0.3478 0.4846 0.0153

70 µγ 0.4158 0.6875 0.0217
σ 0.5284 0.0995 0.0031
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.1033 0.1056 0.0033

β 0.3159 1.0041 0.0318
γ 0.1797 1.1374 0.036
µβ 0.286 0.495 0.0157

80 µγ 0.4158 0.6875 0.0217
σ 0.2845 0.0536 0.0017
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.4492 0.4592 0.0145

β 0.2812 0.9831 0.0311
γ 0.17 1.1059 0.035
µβ 0.3302 0.4874 0.0154

90 µγ 0.4158 0.6875 0.0217
σ 0.2615 0.0493 0.0016
σβ 1.5102 0.7627 0.0241
Sγ 0.0049 0.0024 1.00E-04
π 0.656 0.6706 0.0212
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Figure 4.10: Posterior Mean weights of beta and gamma at N=50 using
Sigmoid Activation function
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Table 4.10 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 50. The table shows that β has a posterior weight

of 0.345, 0.3159 and 0.2812 and γ shows 0.1976, 0.1797 and 0.17 at training sets of

70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4756, 1.0041

and 0.9831 and γ also has a posterior standard deviation of 0.4888, 1.1374 and

1.1059 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.1504, 0.0313

and 0.0311 and γ also shows NSE values of 0.1546, 0.036 and 0.035 at training sets

of 70%, 80% and 90% respectively. This implies a decreasing NSE values for both

β and γ as the training sets increases.

Figure 4.10 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50.
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Table 4.11: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=100.

Training set Parameters results pweight results pstd results nse

β 0.4821 4.2331 0.1339
γ 0.1577 4.3237 0.1367
µβ 0.5481 0.4517 0.0143

70 µγ 0.4167 0.6872 0.0217
σ 5.7997 0.7877 0.0249
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0031 0.0032 0.0001

β 0.4395 4.1741 0.132
γ 0.1582 4.2718 0.1351
µβ 0.5699 0.4482 0.0142

80 µγ 0.4167 0.6872 0.0217
σ 7.2214 0.9808 0.031
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0025 0.0026 1.00E-04

β 0.3509 3.7577 0.1188
γ 0.1601 3.8493 0.1217
µβ 0.5971 0.4433 0.014

90 µγ 0.4167 0.6872 0.0217
σ 8.637 1.173 0.0371
σβ 1.5168 0.7589 0.024
Sγ 0.0049 0.0024 1.00E-04
π 0.0021 0.0022 1.00E-04
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Figure 4.11: Posterior Mean weights of beta and gamma at N=100 using
Sigmoid Activation function
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Table 4.11 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 100. The table shows that β has a posterior weight

of 0.4821, 0.4395 and 0.3509 and γ shows 0.1577, 0.1582 and 0.1601 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 4.2331, 4.1741

and 3.7577 and γ also has a posterior standard deviation of 4.3237, 4.2718 and

3.8493 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.1339, 0.132 and

0.1183 and γ also shows NSE values of 0.1367, 0.1351 and 0.1217 at training sets

of 70%, 80% and 90% respectively. This implies a decreasing NSE values for both

β and γ as the training sets increases.

Figure 4.11 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 100.
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Table 4.12: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=200.

Training set Parameters results pweight results pstd results nse

β 0.23073 3.7703 0.11923
γ 0.19497 3.68798 0.11662
µβ 0.65804 0.42854 0.01355

70 µγ 0.41915 0.68682 0.02172
σ 16.73863 1.62234 0.0513
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 8.00E-05
π 0.00055 0.00057 2.00E-05

β 0.22223 3.56154 0.11263
γ 0.11241 3.4871 0.11027
µβ 0.67867 0.42495 0.01344

80 µγ 0.41915 0.68682 0.02172
σ 21.8621 2.11892 0.06701
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 8.00E-05
π 0.00042 0.00043 1.00E-05

β 0.20027 3.31203 0.10474
γ 0.10778 3.2397 0.10245
µβ 0.69245 0.42258 0.01336

90 µγ 0.41915 0.68682 0.02172
σ 28.26497 2.7395 0.08663
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 8.00E-05
π 0.00032 0.00034 1.00E-05
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Figure 4.12: Posterior Mean weights of beta and gamma at N=200 using
Sigmoid Activation function

73



Table 4.12 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 200. The table shows that β has a posterior weight

of 0.2307, 0.2222 and 0.2002 and γ shows 0.1949, 0.1124 and 0.1077 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 3.7703, 3.5615

and 3.3120 and γ also has a posterior standard deviation of 3.6879, 3.4871 and

3.2397 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.1192, 0.1126

and 0.1047 and γ also shows NSE values of 0.1166, 0.1102 and 0.1024 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.12 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 200.
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Table 4.13: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=500.

Training set Parameters results pweight results pstd results nse

β 0.78159 2.20249 0.06965
γ 0.75345 2.11861 0.067
µβ 0.75086 0.41334 0.01307

70 µγ 0.42833 0.6905 0.02184
σ 57.95334 3.58395 0.11333
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 8.00E-05
π 6.57E-05 6.80E-05 2.15E-06

β 0.69851 2.06025 0.06515
γ 0.68108 1.97961 0.0626
µβ 0.75938 0.41185 0.01302

80 µγ 0.42833 0.6905 0.02184
σ 75.28146 4.65556 0.14722
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 5.06E-05 5.24E-05 1.66E-06

β 0.62407 1.93499 0.06119
γ 0.61545 1.85779 0.05875
µβ 0.76639 0.41062 0.01298

90 µγ 0.42833 0.6905 0.02184
σ 94.99439 5.87465 0.18577
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 8.00E-05
π 4.01E-05 4.15E-05 1.31E-06
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Figure 4.13: Posterior Mean weights of beta and gamma at N=500 using
Sigmoid Activation function
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Table 4.13 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 500. The table shows that β has a posterior weight

of 0.7815, 0.6985 and 0.6240 and γ shows 0.7534, 0.6810 and 0.6154 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 2.2024, 2.0602

and 1.9349 and γ also has a posterior standard deviation of 2.1186, 1.9796 and

1.8577 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0696, 0.0651

and 0.0611 and γ also shows NSE values of 0.067, 0.0626 and 0.0587 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.13 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 500.
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Table 4.14: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=1000.

Training set Parameters results pweight results pstd results nse

β 0.41623 1.56511 0.04949
γ 1.43441 1.49998 0.04743
µβ 0.78569 0.40621 0.01285

70 µγ 0.42807 0.69204 0.02188
σ 89.79078 3.93742 0.12451
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 0.00007
π 2.14E-05 2.21E-05 6.98E-07

β 0.35677 1.45543 0.04602
γ 1.38161 1.39454 0.0441
µβ 0.79098 0.40536 0.01282

80 µγ 0.42807 0.69204 0.02188
σ 116.98538 5.12993 0.16222
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 0.00007
π 1.64E-05 1.70E-05 5.36E-07

β 0.31354 1.37997 0.04364
γ 1.34362 1.32276 0.04183
µβ 0.79515 0.4047 0.0128

90 µγ 0.42807 0.69204 0.02188
σ 149.08055 6.53734 0.20673
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 0.00007
π 1.29E-05 1.33E-05 4.21E-07
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Figure 4.14: Posterior Mean weights of beta and gamma at N=1000 using
Sigmoid Activation function

79



Table 4.14 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 1000. The table shows that β has a posterior weight

of 0.4162, 0.3567 and 0.3135 and γ shows 1.4344, 1.3816 and 1.3436 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 1.5651, 1.4554

and 1.3799 and γ also has a posterior standard deviation of 1.4999, 1.3945 and

1.3227 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0494, 0.0460

and 0.0436 and γ also shows NSE values of 0.0474, 0.0441 and0.0418 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.14 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 1000.
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Table 4.15: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=5000.

Training set Parameters results pweight results pstd results nse

β 0.1144 0.76396 0.02416
γ 1.05284 0.7566 0.02393
µβ 0.8221 0.40298 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 492.35155 9.72218 0.30744
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 7.92E-07 8.13E-07 2.57E-08

β 0.1637 0.7122 0.02252
γ 1.04892 0.70557 0.02231
µβ 0.82289 0.40293 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 642.73478 12.69172 0.40135
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 6.06E-07 6.23E-07 1.97E-08

β 0.1923 0.67398 0.02131
γ 1.04683 0.66768 0.02111
µβ 0.82351 0.4029 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 810.85186 16.01143 0.50633
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 4.81E-07 4.94E-07 1.56E-08
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Figure 4.15: Posterior Mean weights of beta and gamma at N=5000 using
Sigmoid Activation function
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Table 4.15 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 5000. The table shows that β has a posterior weight

of 0.1144, 0.1637 and 0.1923 and γ shows 1.0528, 1.0489 and 1.0468 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.7639, 0.7122

and 0.6739 and γ also has a posterior standard deviation of 0.7566, 0.7055 and

0.6676 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0241, 0.0225

and 0.0213 and γ also shows NSE values of 0.0239, 0.0223 and 0.0211 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.15 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 5000.
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Table 4.16: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=10000.

Training set Parameters results pweight results pstd results nse

β 0.2747 0.5742 0.01816
γ 1.04078 0.56926 0.018
µβ 0.82525 0.40286 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 936.39412 13.07632 0.41351
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 2.08E-07 2.14E-07 6.77E-09

β 0.3038 0.53497 0.01692
γ 1.0384 0.53063 0.01678
µβ 0.82567 0.40286 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 1228.65012 17.15754 0.54257
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 1.59E-07 1.63E-07 5.16E-09

β 0.324 0.50434 0.01595
γ 1.03678 0.50041 0.01582
µβ 0.82599 0.40287 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 1559.79981 21.78189 0.6888
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 1.25E-07 1.28E-07 4.06E-09
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Figure 4.16: Posterior Mean weights of beta and gamma at N=10000
using Sigmoid Activation function
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Table 4.16 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 10000. The table shows that β has a posterior weight

of 0.2747, 0.3038 and 0.324 and γ shows 1.0407, 1.0384 and 1.0367 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.5742, 0.5349

and 0.5043 and γ also has a posterior standard deviation of 0.5692, 0.5306 and

0.5004 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0181, 0.0169

and 0.0159 and γ also shows NSE values of 0.018, 0.0167 and 0.0158 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.16 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 10000.
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Table 4.17: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=20000.

Training set Parameters results pweight results pstd results nse

β 0.3982 0.4536 0.01434
γ 1.03059 0.45243 0.01431
µβ 0.82697 0.40292 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 2452.05682 24.21357 0.7657
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 3.98E-08 4.09E-08 1.29E-09

β 0.4064 0.42387 0.0134
γ 1.03003 0.4228 0.01337
µβ 0.82717 0.40294 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 3205.55708 31.65424 1.00099
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 3.04E-08 3.13E-08 9.89E-10

β 0.4119 0.39873 0.01261
γ 1.02967 0.39767 0.01258
µβ 0.82733 0.40296 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 4054.9759 40.04208 1.26624
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 2.40E-08 2.47E-08 7.82E-10
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Figure 4.17: Posterior Mean weights of beta and gamma at N=20000
using Sigmoid Activation function
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Table 4.17 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 20000. The table shows that β has a posterior weight

of 0.3982, 0.4064 and 0.4119 and γ shows 1.0305, 1.0300 and 1.0296 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4536, 0.4238

and 0.3987 and γ also has a posterior standard deviation of 0.4524, 0.4228 and

0.3976 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0143, 0.0134

and 0.0126 and γ also shows NSE values of 0.0143, 0.0133 and 0.0125 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.17 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 20000.
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Table 4.18: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error using Sigmoid activation function
at N=50000.

Training set Parameters results pweight results pstd results nse

β 0.4476 0.27344 0.00865
γ 1.02691 0.27322 0.00864
µβ 0.82797 0.40306 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 5548.14404 34.65024 1.09574
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 7.03E-09 7.23E-09 2.29E-10

β 0.4508 0.25517 0.00807
γ 1.0267 0.25496 0.00806
µβ 0.82806 0.40308 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 7246.12536 45.25477 1.43108
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 5.38E-09 5.53E-09 1.75E-10

β 0.4534 0.2407 0.00761
γ 1.02652 0.2405 0.00761
µβ 0.82813 0.4031 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 9158.65766 57.19925 1.8088
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 4.26E-09 4.38E-09 1.38E-10
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Figure 4.18: Posterior Mean weights of beta and gamma at N=50000
using Sigmoid Activation function
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Table 4.18 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using Sigmoid activation

function at the sample size of 50000. The table shows that β has a posterior weight

of 0.4476, 0.4508 and 0.4534 and γ shows 1.0269, 1.0267 and 1.0265 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.2734, 0.2551

and 0.2407 and γ also has a posterior standard deviation of 0.2732, 0.2549 and

0.2405 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0086, 0.0080

and 0.0076 and γ also shows NSE values of 0.0086, 0.0080 and 0.0076 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.18 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50000.
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4.4 BAYESIAN RESULTS FOR TANGENT-SIGMOID

ACTIVATION FUNCTION

The results for the parameters of the model using Bayesian approach with Tangent-

Sigmoid activation function are displayed in this sesction. These results are tabled

under the headings of Posterior Mean Weight, Posterior Standard Deviation and

the Numerical Standard Error (NSE). The results are obtained for the Tangent-

Sigmoid activation functions at 70%, 80% and 90% training sets and at sample size

of 50, 100, 200, 500, 1000, 5000, 10000, 20000 and 50000.
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Table 4.19: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error using Tangent-Sigmoid activation func-
tion at N=50.

Training set Parameters results pweight results pstd results nse

β 0.54336 1.40993 0.04459
γ 0.32396 1.55575 0.0492
µβ 0.14589 0.51756 0.01637

70 µγ 0.4158 0.6875 0.02174
σ 0.50761 0.09562 0.00302
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 0.00008
π 0.11057 0.11303 0.00357

β 0.38149 1.32814 0.042
γ 0.75955 1.44937 0.04583
µβ 0.21439 0.5059 0.016

80 µγ 0.4158 0.6875 0.02174
σ 0.4106 0.07734 0.00245
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 0.00008
π 0.16447 0.16813 0.00532

β 0.34107 1.29615 0.04099
γ 0.7237 1.40873 0.04455
µβ 0.26044 0.49824 0.01576

90 µγ 0.4158 0.6875 0.02174
σ 0.35723 0.06729 0.00213
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 0.00008
π 0.22474 0.22974 0.00726
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Figure 4.19: Posterior Mean weights of beta and gamma at N=50 using
Tangent-Sigmoid Activation function
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Table 4.19 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 50. The table shows that β has a pos-

terior weight of 0.5433, 0.3814 and 0.3410 and γ shows 0.3239, 0.7595 and 0.7237

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 1.4099, 1.3281

and 1.2961 and γ also has a posterior standard deviation of 1.5557, 1.4493 and

1.4087 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0445, 0.042 and

0.0409 and γ also shows NSE values of 0.0492, 0.0458 and 0.0445 at training sets

of 70%, 80% and 90% respectively. This implies a decreasing NSE values for both

β and γ as the training sets increases.

Figure 4.19 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50.
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Table 4.20: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=100.

Training set Parameters results pweight results pstd results nse

β 0.3785 0.48118 0.01522
γ 0.41674 0.68721 0.02173
µβ 0.93885 0.12751 0.00403

70 µγ 1.51679 0.7589 0.024
σ 0.00489 0.00239 0.00008
σβ 0.02149 0.02221 0.0007
Sγ 0.39865 1.19626 0.03783
π 0.15354 1.31271 0.04151

β 0.41123 0.47605 0.01505
γ 0.41674 0.68721 0.02173
µβ 1.07891 0.14653 0.00463

80 µγ 1.51679 0.7589 0.024
σ 0.00489 0.00239 0.00008
σβ 0.01837 0.01899 0.0006
Sγ 0.35377 1.107 0.03501
π 0.26148 1.21713 0.03849

β 0.46138 0.46737 0.01478
γ 0.41674 0.68721 0.02173
µβ 1.35325 0.18379 0.00581

90 µγ 1.51679 0.7589 0.024
σ 0.00489 0.00239 0.00008
σβ 0.01431 0.01479 0.00047
Sγ 0.00489 0.00239 7.57E-05
π 0.01430 0.01478 0.00047
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Figure 4.20: Posterior Mean weights of beta and gamma at N=100 using
Tangent-Sigmoid Activation function
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Table 4.20 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 100. The table shows that β has a pos-

terior weight of 0.3785, 0.4112 and 0.4613 and γ shows 0.4167, 0.4167 and 0.4167

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4811, 0.4760

and 0.4673 and γ also has a posterior standard deviation of 0.6872, 0.6872 and

0.6872 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0152, 0.0150

and 0.0147 and γ also shows NSE values of 0.0217, 0.0217 and 0.0217 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.20 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 100.
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Table 4.21: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=200.

Training set Parameters results pweight results pstd results nse

β 0.53087 0.45065 0.01425
γ 0.41915 0.68682 0.02172
µβ 4.79492 0.46473 0.0147

70 µγ 1.51529 0.75878 0.02399
σ 0.00492 0.00242 0.00008
σβ 0.00193 0.002 0.00006
Sγ 0.47254 1.03049 0.03259
π 1.22088 0.9495 0.03003

β 0.56586 0.44458 0.01406
γ 0.41915 0.68682 0.02172
µβ 6.32828 0.61335 0.0194

80 µγ 1.51529 0.75878 0.02399
σ 0.00492 0.00242 0.00008
σβ 0.00146 0.00151 0.00005
Sγ 0.43477 0.9632 0.03046
π 1.21092 0.88202 0.02789

β 0.58797 0.44073 0.01394
γ 0.41915 0.68682 0.02172
µβ 8.41592 0.81569 0.02579

90 µγ 1.51529 0.75878 0.02399
σ 0.00492 0.00242 0.00008
σβ 0.0011 0.00113 0.00004
Sγ 0.00492 0.00242 7.65E-05
π 0.00109 0.00113 3.58E-05
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Figure 4.21: Posterior Mean weights of beta and gamma at N=200 using
Tangent-Sigmoid Activation function
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Table 4.21 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 200. The table shows that β has a pos-

terior weight of 0.5308, 0.5658 and 0.5879 and γ shows 0.4191, 0.4191 and 0.4191

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4506, 0.4445

and 0.4407 and γ also has a posterior standard deviation of 0.6868, 0.6868 and

0.6868 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0142, 0.0140

and 0.0139 and γ also shows NSE values of 0.0217, 0.0217 and 0.0217 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.21 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 200.
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Table 4.22: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=500.

Training set Parameters results pweight results pstd results nse

β 0.31947 0.69746 0.02206
γ 1.22421 0.5943 0.01879
µβ 0.69748 0.423 0.01338

70 µγ 0.42833 0.6905 0.02184
σ 27.60052 1.70687 0.05398
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 0.00008
π 0.00014 0.00014 4.52E-06

β 0.28237 0.65263 0.02064
γ 1.20467 0.55326 0.0175
µβ 0.71145 0.42047 0.0133

80 µγ 0.42833 0.6905 0.02184
σ 35.93071 2.22203 0.07027
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 0.00008
π 0.00011 0.00011 3.47E-06

β 0.24862 0.61076 0.01931
γ 1.18479 0.51562 0.01631
µβ 0.72248 0.41846 0.01323

90 µγ 0.42833 0.6905 0.02184
σ 44.98916 2.78222 0.08798
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 0.00008
π 8.46E-05 8.76E-05 2.77E-06
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Figure 4.22: Posterior Mean weights of beta and gamma at N=500 using
Tangent-Sigmoid Activation function
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Table 4.22 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 500. The table shows that β has a pos-

terior weight of 0.3194, 0.2823 and 0.2486 and γ shows 1.2242, 1.2046 and 1.1847

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.6974, 0.6526

and 0.6107 and γ also has a posterior standard deviation of 0.5943, 0.5532 and

0.5156 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0220, 0.0206

and 0.0193 and γ also shows NSE values of 0.0187, 0.0175 and 0.0163 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.22 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 500.
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Table 4.23: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=1000.

Training set Parameters results pweight results pstd results nse

β 0.14197 0.48951 0.01548
γ 1.12918 0.41395 0.01309
µβ 0.76106 0.4103 0.01297

70 µγ 0.42807 0.69204 0.02188
σ 40.29244 1.76687 0.05587
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 4.76E-05 4.92E-05 1.56E-06

β 0.11823 0.45588 0.01442
γ 1.11572 0.38506 0.01218
µβ 0.76923 0.4089 0.01293

80 µγ 0.42807 0.69204 0.02188
σ 52.435 2.29933 0.07271
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 3.66E-05 3.78E-05 1.20E-06

β 0.10143 0.43244 0.01367
γ 1.10661 0.36538 0.01155
µβ 0.77534 0.40787 0.0129

90 µγ 0.42807 0.69204 0.02188
σ 66.41551 2.91239 0.0921
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 2.89E-05 2.99E-05 9.44E-07
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Figure 4.23: Posterior Mean weights of beta and gamma at N=1000 using
Tangent-Sigmoid Activation function
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Table 4.23 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 1000. The table shows that β has a pos-

terior weight of 0.1419, 0.1182 and 0.1014 and γ shows 1.1291, 1.1157 and 1.1066

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4895, 0.4558

and 0.4324 and γ also has a posterior standard deviation of 0.4139, 0.3850 and

0.3653 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0154, 0.0144

and 0.0136 and γ also shows NSE values of 0.0130, 0.0121 and 0.0115 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.23 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 1000.
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Table 4.24: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=5000.

Training set Parameter results pweight results pstd results nse

β 0.2998 0.23607 0.00747
γ 1.0287 0.22653 0.00716
µβ 0.81764 0.40334 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 199.04132 3.93035 0.12429
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 0.00007
π 1.96E-06 2.01E-06 6.36E-08

β 0.325 0.21976 0.00695
γ 1.02787 0.21116 0.00668
µβ 0.81898 0.40322 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 259.12274 5.11675 0.16181
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.50E-06 1.55E-06 4.89E-08

β 0.341 0.20806 0.00658
γ 1.02759 0.19991 0.00632
µβ 0.82003 0.40313 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 327.51623 6.46728 0.20451
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.19E-06 1.22E-06 3.87E-08
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Figure 4.24: Posterior Mean weights of beta and gamma at N=5000 using
Tangent-Sigmoid Activation function
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Table 4.24 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 5000. The table shows that β has a pos-

terior weight of 0.2998, 0.325 and 0.341 and γ shows 1.0287, 1.0278 and 1.0275

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.2360, 0.2197

and 0.2080 and γ also has a posterior standard deviation of 0.2265, 0.2111 and

0.1999 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0074, 0.0069

and 0.0065 and γ also shows NSE values of 0.0071, 0.0066 and 0.0063 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.24 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 5000.
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Table 4.25: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=10000.

Training set Parameters results pweight results pstd results nse

β 0.38699 0.17482 0.00553
γ 1.02645 0.16857 0.00533
µβ 0.82279 0.40294 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 348.79995 4.87083 0.15403
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 5.59E-07 5.74E-07 1.82E-08

β 0.40106 0.16273 0.00515
γ 1.02595 0.15722 0.00497
µβ 0.8235 0.40291 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 457.94558 6.395 0.20223
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 4.26E-07 4.38E-07 1.38E-08

β 0.41095 0.1535 0.00485
γ 1.02565 0.14849 0.0047
µβ 0.82406 0.40289 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 580.79302 8.11051 0.25648
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 3.36E-07 3.45E-07 1.09E-08
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Figure 4.25: Posterior Mean weights of beta and gamma at N=10000
using Tangent-Sigmoid Activation function
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Table 4.25 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 10000. The table shows that β has a pos-

terior weight of 0.3869, 0.4010 and 0.4109 and γ shows 1.0264, 1.0259 and 1.0256

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1748, 0.1627

and 0.1535 and γ also has a posterior standard deviation of 0.1685, 0.1572 and

0.1484 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0055, 0.0051

and 0.0048 and γ also shows NSE values of 0.0053, 0.0049 and 0.0047 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.25 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 10000.
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Table 4.26: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=20000.

Training set Parameters results pweight results pstd results nse

β 0.44547 0.13787 0.00436
γ 1.02436 0.13614 0.0043
µβ 0.82577 0.40287 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 1077.65099 10.64159 0.33652
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 9.05E-08 9.30E-08 2.94E-09

β 0.45015 0.1288 0.00407
γ 1.02433 0.12721 0.00402
µβ 0.82612 0.40288 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 1409.21619 13.91573 0.44005
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 6.92E-08 7.11E-08 2.25E-09

β 0.45342 0.12121 0.00383
γ 1.02434 0.11965 0.00378
µβ 0.82639 0.40289 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 1782.53574 17.60219 0.55663
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 5.47E-08 5.62E-08 1.78E-09
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Figure 4.26: Posterior Mean weights of beta and gamma at N=20000
using Tangent-Sigmoid Activation function
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Table 4.26 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 20000. The table shows that β has a poste-

rior weight of 0.4454, 0.4501 and 0.4534 and γ shows 1.02436, 1.02433 and 1.02434

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1378, 0.1288

and 0.1212 and γ also has a posterior standard deviation of 0.1361, 0.1272 and

0.1196 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.00436, 0.0040

and 0.0038 and γ also shows NSE values of 0.0043, 0.00402 and 0.0037 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.26 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 20000.
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Table 4.27: Summary Table of the Posterior Mean, Standard Deviation
and Numerical Standard Error for Tangent-Sigmoid activation function
at N=50000.

Training set Parameters results pmean results pstd results nse

β 0.47175 0.08256 0.00261
γ 1.02385 0.08221 0.0026
µβ 0.82746 0.40298 0.01274

70 µγ 0.42856 0.69764 0.02206
σ 2251.55746 14.06182 0.44467
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.73E-08 1.78E-08 5.63E-10

β 0.47348 0.07706 0.00244
γ 1.02386 0.07672 0.00243
µβ 0.8276 0.403 0.01274

80 µγ 0.42856 0.69764 0.02206
σ 2941.96528 18.37368 0.58103
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.33E-08 1.36E-08 4.31E-10

β 0.4749 0.07266 0.0023
γ 1.02386 0.07235 0.00229
µβ 0.82772 0.40302 0.01274

90 µγ 0.42856 0.69764 0.02206
σ 3708.71454 23.16231 0.73246
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.05E-08 1.08E-08 3.42E-10
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Figure 4.27: Posterior Mean weights of beta and gamma at N=50000
using Tangent-Sigmoid Activation function
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Table 4.27 shows the results for the posterior weight, standard deviation and nu-

merical standard error of the bayesian neural network model using Tangent-Sigmoid

activation function at the sample size of 50000. The table shows that β has a poste-

rior weight of 0.4717, 0.4734 and 0.4749 and γ shows 1.02385, 1.02386 and 1.02386

at training sets of 70%, 80% and 90% respectively. The result shows a decreasing

posterior weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0825, 0.0770

and 0.0726 and γ also has a posterior standard deviation of 0.0822, 0.0767 and

0.0723 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0026, 0.0024

and 0.0023 and γ also shows NSE values of 0.0026, 0.0024 and 0.0022 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.27 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50000.
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4.5 BAYESIAN RESULTS FOR SSLHT ACTI-

VATION FUNCTION

The results for the parameters of the model using Bayesian approach with Sym-

metric Saturating Linear Hyperbolic Tangent (SSLHT) activation function are dis-

played in this sesction. These results are tabled under the headings of Posterior

Mean Weight, Posterior Standard Deviation and the Numerical Standard Error

(NSE). The results are obtained for the SSLHT activation functions at 70%, 80%

and 90% training sets and at sample size of 50, 100, 200, 500, 1000, 5000, 10000,

20000 and 50000.
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Table 4.28: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for SSLHT activation function at N=50.

Training set Parameters results pweight results pstd results nse

β 0.82261 0.87856 0.02778
γ 1.13206 0.84362 0.02668
µβ 0.77423 0.40767 0.01289

70 µγ 0.4158 0.6875 0.02174
σ 75.44157 14.21069 0.44938
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 8.00E-05
π 0.00044 0.00044 1.00E-05

β 0.7481 0.81938 0.02591
γ 1.09355 0.7945 0.02512
µβ 0.78162 0.40657 0.01286

80 µγ 0.4158 0.6875 0.02174
σ 99.46493 18.73589 0.59248
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 8.00E-05
π 0.00033 0.00034 1.00E-05

β 0.6068 0.80012 0.0253
γ 1.08513 0.77801 0.0246
µβ 0.78615 0.4059 0.01284

90 µγ 0.4158 0.6875 0.02174
σ 126.63107 23.85309 0.7543
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 8.00E-05
π 0.00026 0.00026 1.00E-05
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Figure 4.28: Posterior Mean weights of beta and gamma at N=50 using
SSLHT Activation function
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Table 4.28 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 50. The table shows that β has a posterior weight of

0.8226, 0.7481 and 0.6068 and γ shows 1.1320, 1.0935 and 1.0851 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.8785, 0.8193

and 0.8001 and γ also has a posterior standard deviation of 0.8436, 0.7945 and

0.7780 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0277, 0.0259

and 0.0253 and γ also shows NSE values of 0.0266, 0.0251 and 0.0246 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.28 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50.

124



Table 4.29: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for SSLHT activation function at N=100.

Training set Parameters results pweight results pstd results nse

β 0.85297 0.78851 0.02493
γ 1.09291 0.76564 0.02421
µβ 0.79915 0.4061 0.01284

70 µγ 0.41674 0.68721 0.02173
σ 203.3859 27.6222 0.87349
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 8.72E-05 9.02E-05 2.85E-06

β 0.85686 0.7827 0.02475
γ 1.09991 0.75795 0.02397
µβ 0.80162 0.40576 0.01283

80 µγ 0.41674 0.68721 0.02173
σ 263.37708 35.76971 1.13114
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 6.74E-05 6.96E-05 2.20E-06

β 0.84803 0.74648 0.02361
γ 1.09371 0.72278 0.02286
µβ 0.80371 0.40549 0.01282

90 µγ 0.41674 0.68721 0.02173
σ 322.00976 43.73272 1.38295
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 5.51E-05 5.69E-05 1.80E-06
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Figure 4.29: Posterior Mean weights of beta and gamma at N=100 using
SSLHT Activation function
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Table 4.29 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 100. The table shows that β has a posterior weight

of 0.8529, 0.8568 and 0.8480 and γ shows 1.0929, 1.0999 and 1.0937 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.7885, 0.7827

and 0.7464 and γ also has a posterior standard deviation of 0.7656, 0.7579 and

0.7227 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0249, 0.0247

and 0.0236 and γ also shows NSE values of 0.0242, 0.0239 and 0.0228 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.29 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 100.
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Table 4.30: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for SSLHT activation function at N=200.

Training set Parameters results pweight results pstd results nse

β 0.80984 0.6171 0.01951
γ 0.94416 0.64598 0.02043
µβ 0.80896 0.40553 0.01282

70 µγ 0.41915 0.68682 0.02172
σ 422.09017 40.90982 1.29368
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 7.65E-05
π 2.17E-05 2.24E-05 7.10E-07

β 0.99622 0.58828 0.0186
γ 0.95684 0.61403 0.01942
µβ 0.81091 0.4052 0.01281

80 µγ 0.41915 0.68682 0.02172
σ 549.5403 53.26255 1.68431
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 0.00008
π 1.67E-05 1.72E-05 5.45E-07

β 0.92696 0.55245 0.01747
γ 0.96552 0.57644 0.01823
µβ 0.81231 0.405 0.01281

90 µγ 0.41915 0.68682 0.02172
σ 696.41129 67.49758 2.13446
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 7.65E-05
π 1.32E-05 1.36E-05 4.30E-07
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Figure 4.30: Posterior Mean weights of beta and gamma at N=200 using
SSLHT Activation function
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Table 4.30 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 200. The table shows that β has a posterior weight

of 0.8098, 0.9962 and 0.9269 and γ shows 0.9441, 0.9568 and 0.9655 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.6171, 0.5882

and 0.5524 and γ also has a posterior standard deviation of 0.6459, 0.6140 and

0.5764 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0195, 0.0186

and 0.0174 and γ also shows NSE values of 0.0204, 0.0194 and 0.0182 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.30 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 200.
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Table 4.31: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for SSLHT activation function at N=500.

Training set Parameters results pweight results pstd results nse

β 0.84006 0.42836 0.01355
γ 0.98029 0.45088 0.01426
µβ 0.82438 0.40265 0.01273

70 µγ 0.42833 0.6905 0.02184
σ 1039.09264 64.25961 2.03207
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 3.66E-06 3.79E-06 1.20E-07

β 0.80013 0.3992 0.01262
γ 0.98525 0.42071 0.0133
µβ 0.82515 0.40255 0.01273

80 µγ 0.42833 0.6905 0.02184
σ 1352.98554 83.67139 2.64592
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 2.81E-06 2.91E-06 9.21E-08

β 0.76064 0.369 0.01167
γ 0.99 0.38946 0.01232
µβ 0.82579 0.40246 0.01273

90 µγ 0.42833 0.6905 0.02184
σ 1715.37513 106.0823 3.35462
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 2.22E-06 2.30E-06 7.26E-08
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Figure 4.31: Posterior Mean weights of beta and gamma at N=500 using
SSLHT Activation function
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Table 4.31 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 500. The table shows that β has a posterior weight

of 0.8400, 0.8001 and 0.7606 and γ shows 0.9802, 0.9852 and 0.99 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.4283, 0.3992

and 0.369 and γ also has a posterior standard deviation of 0.4508, 0.4207 and 0.3894

at training sets of 70%, 80% and 90% respectively. This implies that both β and

γ produced decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0135, 0.0126

and 0.0116 and γ also shows NSE values of 0.0142, 0.0133 and 0.0123 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.31 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 500.

133



Table 4.32: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHT activation function at
N=1000.

Training set Parameters results pweight results pstd results nse

β 0.6672 0.2927 0.00926
γ 1.00148 0.3106 0.00982
µβ 0.82547 0.40181 0.01271

70 µγ 0.42807 0.69204 0.02188
σ 1927.52674 84.52405 2.67289
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 9.95E-07 1.03E-06 3.25E-08

β 0.64073 0.27239 0.00861
γ 1.0047 0.28901 0.00914
µβ 0.82593 0.40176 0.0127

80 µγ 0.42807 0.69204 0.02188
σ 2516.77188 110.36307 3.48999
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 7.62E-07 7.88E-07 2.49E-08

β 0.61905 0.25691 0.00812
γ 1.00735 0.27228 0.00861
µβ 0.8263 0.4017 0.0127

90 µγ 0.42807 0.69204 0.02188
σ 3201.31385 140.38094 4.43924
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 5.99E-07 6.19E-07 1.96E-08
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Figure 4.32: Posterior Mean weights of beta and gamma at N=1000 using
SSLHT Activation function
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Table 4.32 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 1000. The table shows that β has a posterior weight

of 0.6672, 0.6407 and 0.6190 and γ shows 1.0014, 1.0047 and 1.0073 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.2927, 0.2723

and 0.2569 and γ also has a posterior standard deviation of 0.3106, 0.2890 and

0.2722 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0092, 0.0086

and 0.0081 and γ also shows NSE values of 0.0098, 0.0091 and 0.0086 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.32 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 1000.
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Table 4.33: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHT activation function at
N=5000.

Training set Parameters results pweight results pstd results nse

β 0.76896 0.15635 0.00494
γ 1.02413 0.15787 0.00499
µβ 0.82809 0.40311 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 10392.37071 205.21219 6.48938
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 3.75E-08 3.85E-08 1.22E-09

β 0.76967 0.14526 0.00459
γ 1.02421 0.1466 0.00464
µβ 0.82816 0.40312 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 13583.91039 268.23369 8.48229
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.87E-08 2.95E-08 9.32E-10

β 0.77524 0.13777 0.00436
γ 1.02423 0.13904 0.0044
µβ 0.82822 0.40314 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 17158.84149 338.82581 10.71461
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.27E-08 2.33E-08 7.38E-10
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Figure 4.33: Posterior Mean weights of beta and gamma at N=5000 using
SSLHT Activation function
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Table 4.33 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 5000. The table shows that β has a posterior weight

of 0.7689, 0.7696 and 0.7752 and γ shows 1.0241, 1.0242 and 1.0242at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1563, 0.1452

and 0.1377 and γ also has a posterior standard deviation of 0.1578, 0.1466 and

0.1390 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0049, 0.0045

and 0.0043 and γ also shows NSE values of 0.0049, 0.0046 and 0.0044 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.33 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 5000.
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Table 4.34: Summary Table of the Posterior Weight, standard deviation
and NSE for SSLHT activation function at N=10000.

Training set Parameters results pweight results pstd results nse

β 0.79964 0.11509 0.00364
γ 1.02421 0.11629 0.00368
µβ 0.8284 0.4032 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 20897.41076 291.8228 9.22825
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 9.33E-09 9.59E-09 3.03E-10

β 0.80129 0.1072 0.00339
γ 1.02424 0.10825 0.00342
µβ 0.82843 0.40322 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 27340.46009 381.79704 12.07348
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 7.13E-09 7.33E-09 2.32E-10

β 0.80381 0.10133 0.0032
γ 1.02425 0.10227 0.00323
µβ 0.82847 0.40323 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 34656.733 483.96545 15.30433
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 5.63E-09 5.78E-09 1.83E-10
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Figure 4.34: Posterior Mean weights of beta and gamma at N=10000
using SSLHT Activation function
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Table 4.34 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 10000. The table shows that β has a posterior weight

of 0.7996, 0.8012 and 0.8038 and γ shows 1.02421, 1.02424 and 1.02425 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1150, 0.1072

and 0.1013 and γ also has a posterior standard deviation of 0.1162, 0.1082 and

0.1022 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0036, 0.0033

and 0.0032 and γ also shows NSE values of 0.0036, 0.0034 and 0.0032 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.34 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 10000.
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Table 4.35: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHT activation function at
N=20000.

Training set Parameters results pweight results pstd results nse

β 0.77629 0.09498 0.003
γ 1.02463 0.09497 0.003
µβ 0.82855 0.40327 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 44176.73736 436.2365 13.79501
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.21E-09 2.27E-09 7.17E-11

β 0.78602 0.08874 0.00281
γ 1.02456 0.08873 0.00281
µβ 0.82857 0.40328 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 57714.92439 569.9234 18.02256
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.69E-09 1.74E-09 5.49E-11

β 0.79482 0.08347 0.00264
γ 1.0245 0.08347 0.00264
µβ 0.82859 0.40329 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 73033.20745 721.1884 22.80598
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.34E-09 1.37E-09 4.34E-11
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Figure 4.35: Posterior Mean weights of beta and gamma at N=20000
using SSLHT Activation function
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Table 4.35 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 20000. The table shows that β has a posterior weight

of 0.7762, 0.7860 and 0.7948 and γ shows 1.0246, 1.02456 and 1.0245 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0949, 0.0887

and 0.0834 and γ also has a posterior standard deviation of 0.0949, 0.0887 and

0.0834 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.003, 0.0028 and

0.0026 and γ also shows NSE values of 0.003, 0.0028 and 0.0026 at training sets of

70%, 80% and 90% respectively. This implies a decreasing NSE values for both β

and γ as the training sets increases.

Figure 4.35 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 20000.
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Table 4.36: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHT activation function at
N=50000.

Training set Parameters results pweight results pstd results nse

β 0.83436 0.05667 0.00179
γ 1.02419 0.0566 0.00179
µβ 0.82866 0.40334 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 108991.9585 680.69567 21.52549
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 3.58E-10 3.68E-10 1.16E-11

β 0.84051 0.05285 0.00167
γ 1.02414 0.0528 0.00167
µβ 0.82867 0.40335 0.01276

80 µγ 0.42856 0.69764 0.02206
σ 142332.7604 888.92148 28.11017
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.74E-10 2.82E-10 8.91E-12

β 0.84532 0.0498 0.00157
γ 1.02411 0.04975 0.00157
µβ 0.82868 0.40336 0.01276

90 µγ 0.42856 0.69764 0.02206
σ 180208.1124 1125.46727 35.5904
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.16E-10 2.22E-10 7.04E-12
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Figure 4.36: Posterior Mean weights of beta and gamma at N=50000
using SSLHT Activation function
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Table 4.36 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHT activation

function at the sample size of 50000. The table shows that β has a posterior weight

of 0.8343, 0.8405 and 0.8453 and γ shows 1.02419, 1.02414 and 1.02411 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0566, 0.0528

and 0.0498 and γ also has a posterior standard deviation of 0.0566, 0.0528 and

0.0497 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0017, 0.0016

and 0.0015 and γ also shows NSE values of 0.0017, 0.0016 and 0.0015 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.36 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50000.
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4.6 BAYESIAN RESULTS FOR SSLHTS ACTI-

VATION FUNCTION

The results for the parameters of the model using Bayesian approach with Sym-

metric Saturating Linear Hyperbolic Tangent Sigmoid(SSLHTS) activation func-

tion are displayed in this sesction. These results are tabled under the headings

of Posterior Mean Weight, Posterior Standard Deviation and the Numerical Stan-

dard Error (NSE). The results are obtained for the SSLHTS activation functions

at 70%, 80% and 90% training sets and at sample size of 50, 100, 200, 500, 1000,

5000, 10000, 20000 and 50000.
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Table 4.37: Summary Table of the Posterior Weight, Standard Deviation
and Numerical Standard Error for SSLHTS activation function at N=50.

Training set Parameters results pweight results pstd results nse

β 0.7253 0.20619 0.00652
γ 0.94861 0.25933 0.0082
µβ 0.78353 0.40852 0.01292

70 µγ 0.4158 0.6875 0.02174
σ 77.33606 14.56755 0.46067
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 7.67E-05
π 0.00042 0.00043 1.37E-05

β 0.6428 0.19528 0.00618
γ 0.96585 0.23829 0.00754
µβ 0.79068 0.40699 0.01287

80 µγ 0.4158 0.6875 0.02174
σ 108.94284 20.52122 0.64894
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 7.67E-05
π 0.0003 0.00031 9.73E-06

β 0.61262 0.19123 0.00605
γ 0.97413 0.22919 0.00725
µβ 0.79486 0.40617 0.01284

90 µγ 0.4158 0.6875 0.02174
σ 143.09586 26.95451 0.85238
σβ 1.51024 0.76269 0.02412
Sγ 0.00492 0.00243 7.67E-05
π 0.00023 0.00023 7.40E-06
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Figure 4.37: Posterior Mean weights of beta and gamma at N=50 using
SSLHTS Activation function
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Table 4.37 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 50. The table shows that β has a posterior weight of

0.7253, 0.6428 and 0.6126 and γ shows 0.9486, 0.9658 and 0.9741 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.2061, 0.1952

and 0.1912 and γ also has a posterior standard deviation of 0.2593, 0.2382 and

0.2291 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0065, 0.0061

and 0.0060 and γ also shows NSE values of 0.0082, 0.0075 and 0.0072 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.37 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50.
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Table 4.38: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=100.

Training set Parameters results pweight results pstd results nse

β 0.63023 0.19199 0.00607
γ 0.99029 0.21792 0.00689
µβ 0.80444 0.40632 0.01285

70 µγ 0.41674 0.68721 0.02173
σ 206.92079 28.10228 0.88867
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 8.57E-05 8.86E-05 2.80E-06

β 0.68868 0.18838 0.00596
γ 0.99022 0.21614 0.00683
µβ 0.80643 0.40615 0.01284

80 µγ 0.41674 0.68721 0.02173
σ 267.993 36.39661 1.15096
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 6.62E-05 6.84E-05 2.16E-06

β 0.69539 0.16206 0.00512
γ 0.99677 0.18759 0.00593
µβ 0.80956 0.4057 0.01283

90 µγ 0.41674 0.68721 0.02173
σ 364.38366 49.48759 1.56494
σβ 1.51679 0.7589 0.024
Sγ 0.00489 0.00239 7.57E-05
π 4.87E-05 5.03E-05 1.59E-06
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Figure 4.38: Posterior Mean weights of beta and gamma at N=100 using
SSLHTS Activation function
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Table 4.38 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 100. The table shows that β has a posterior weight

of 0.6302, 0.6886 and 0.6953 and γ shows 0.99029, 0.99022 and 0.99677 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1919, 0.1883 and

γ also has a posterior standard deviation of 0.2179, 0.2161 and 0.1875 at training

sets of 70%, 80% and 90% respectively. This implies that both β and γ produced

decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0060, 0.0059 and

0.0051 and γ also shows NSE values of 0.00689, 0.00683 and 0.00593 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.38 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 100.
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Table 4.39: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=200.

Training set Parameters results pweight results pstd results nse

β 0.72245 0.19678 0.00622
γ 1.03354 0.17704 0.0056
µβ 0.81076 0.40417 0.01278

70 µγ 0.41915 0.68682 0.02172
σ 507.27183 49.1658 1.55476
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 7.65E-05
π 1.81E-05 1.87E-05 5.90E-07

β 0.73109 0.1837 0.00581
γ 1.03155 0.16681 0.00528
µβ 0.81283 0.40399 0.01278

80 µγ 0.41915 0.68682 0.02172
σ 674.08718 65.33388 2.06604
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 7.65E-05
π 1.36E-05 1.41E-05 4.44E-07

β 0.89114 0.17192 0.00544
γ 1.03123 0.15494 0.0049
µβ 0.81384 0.40391 0.01277

90 µγ 0.41915 0.68682 0.02172
σ 864.33188 83.77278 2.64913
σβ 1.51529 0.75878 0.02399
Sγ 0.00492 0.00242 7.65E-05
π 1.06E-05 1.10E-05 3.47E-07
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Figure 4.39: Posterior Mean weights of beta and gamma at N=200 using
SSLHTS Activation function
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Table 4.39 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 200. The table shows that β has a posterior weight

of 0.7224, 0.7310 and 0.8911 and γ shows 1.0335, 1.0315 and 1.0312 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1967, 0.1837

and 0.1719 and γ also has a posterior standard deviation of 0.1770, 0.1668 and

0.1549 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0062, 0.0058

and 0.0054 and γ also shows NSE values of 0.0056, 0.0052 and 0.0049 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.39 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 200.
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Table 4.40: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=500.

Training set Parameters results pweight results pstd results nse

β 0.78351 0.11283 0.00357
γ 1.03045 0.09137 0.00289
µβ 0.82592 0.40163 0.0127

70 µγ 0.42833 0.6905 0.02184
σ 1925.05482 119.04932 3.76467
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 1.98E-06 2.05E-06 6.47E-08

β 0.71154 0.10601 0.00335
γ 1.02981 0.08545 0.0027
µβ 0.82647 0.4016 0.0127

80 µγ 0.42833 0.6905 0.02184
σ 2525.89515 156.20651 4.93968
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 1.51E-06 1.56E-06 4.93E-08

β 0.82167 0.10024 0.00317
γ 1.02923 0.08053 0.00255
µβ 0.82688 0.40158 0.0127

90 µγ 0.42833 0.6905 0.02184
σ 3168.82357 195.96652 6.19701
σβ 1.52328 0.75835 0.02398
Sγ 0.00485 0.00238 7.52E-05
π 1.20E-06 1.24E-06 3.93E-08
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Figure 4.40: Posterior Mean weights of beta and gamma at N=500 using
SSLHTS Activation function
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Table 4.40 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 500. The table shows that β has a posterior weight

of 0.7835, 0.7115 and 0.8216 and γ shows 1.0304, 1.0298 and 1.0292 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.1128, 0.1060

and 0.1002 and γ also has a posterior standard deviation of 0.0913, 0.0854 and

0.0805 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0035, 0.0033

and 0.0031 and γ also shows NSE values of 0.0028, 0.0027 and 0.0025 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.40 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 500.
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Table 4.41: Summary Table of the Posterior Weight, standard deviation
and NSE for SSLHTS activation function at N=1000.

Training set Parameters results pweight results pstd results nse

β 0.82071 0.07901 0.0025
γ 1.02735 0.06353 0.00201
µβ 0.82644 0.40108 0.01268

70 µγ 0.42807 0.69204 0.02188
σ 4038.70461 177.1014 5.60044
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 4.75E-07 4.91E-07 1.55E-08

β 0.82952 0.07344 0.00232
γ 1.02686 0.05901 0.00187
µβ 0.82675 0.40109 0.01268

80 µγ 0.42807 0.69204 0.02188
σ 5284.04736 231.71097 7.32734
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 3.63E-07 3.75E-07 1.19E-08

β 0.83532 0.06986 0.00221
γ 1.02657 0.05621 0.00178
µβ 0.82698 0.4011 0.01268

90 µγ 0.42807 0.69204 0.02188
σ 6633.33346 290.87857 9.19839
σβ 1.52485 0.75682 0.02393
Sγ 0.00483 0.00234 7.40E-05
π 2.89E-07 2.99E-07 9.45E-09

162



Figure 4.41: Posterior Mean weights of beta and gamma at N=1000 using
SSLHTS Activation function
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Table 4.41 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 1000. The table shows that β has a posterior weight

of 0.8207, 0.8295 and 0.8353 and γ shows 1.0304, 1.0298 and 1.0292 at training sets

of 70%, 80% and 90% respectively. The result shows a decreasing posterior weights

for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0790, 0.0734

and 0.0698 and γ also has a posterior standard deviation of 0.0635, 0.0590 and

0.0562 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0025, 0.0023

and 0.0022 and γ also shows NSE values of 0.0020, 0.0018 and 0.0017 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.41 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 1000.
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Table 4.42: Posterior mean, standard deviation and NSE for SSLHTS
activation function at N=5000.

Training set Parameters results pmean results pstd results nse

β 0.81289 0.03608 0.00114
γ 1.02392 0.03411 0.00108
µβ 0.82827 0.40314 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 17296.52571 341.54458 10.80059
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.25E-08 2.32E-08 7.32E-10

β 0.82366 0.03368 0.00107
γ 1.02387 0.03189 0.00101
µβ 0.82832 0.40316 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 22534.58014 444.97744 14.07142
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.73E-08 1.78E-08 5.62E-10

β 0.83139 0.03184 0.00101
γ 1.02385 0.03015 0.00095
µβ 0.82836 0.40318 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 28621.71281 565.17656 17.87245
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.36E-08 1.40E-08 4.43E-10
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Figure 4.42: Posterior Mean weights of beta and gamma at N=5000 using
SSLHTS Activation function
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Table 4.42 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 5000. The table shows that β has a posterior weight

of 0.8128, 0.8236 and 0.8313 and γ shows 1.0239, 1.02387 and 1.02385 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0360, 0.0336

and 0.0318 and γ also has a posterior standard deviation of 0.0341, 0.0318 and

0.0301 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0011, 0.0010 and

0.0010 and γ also shows NSE values of 0.00108, 0.00101 and 0.00095 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.42 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 5000.

167



Table 4.43: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=10000.

Training set Parameters results pweight results pstd results nse

β 0.8522 0.02742 0.00087
γ 1.02378 0.02619 0.00083
µβ 0.82847 0.40323 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 32254.4304 450.41839 14.24348
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 6.05E-09 6.21E-09 1.96E-10

β 0.85901 0.02555 0.00081
γ 1.02375 0.02446 0.00077
µβ 0.8285 0.40324 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 42058.62214 587.32945 18.57299
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 4.64E-09 4.76E-09 1.51E-10

β 0.86418 0.02404 0.00076
γ 1.02373 0.02305 0.00073
µβ 0.82853 0.40325 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 53113.5836 741.70694 23.45483
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 3.67E-09 3.77E-09 1.19E-10
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Figure 4.43: Posterior Mean weights of beta and gamma at N=10000
using SSLHTS Activation function
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Table 4.43 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 10000. The table shows that β has a posterior weight

of 0.8522, 0.8590 and 0.8641 and γ shows 1.02378, 1.02375 and 1.02373 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0274, 0.0255

and 0.0240 and γ also has a posterior standard deviation of 0.0261, 0.0244 and

0.0230 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.00087, 0.00081

and 0.00076 and γ also shows NSE values of 0.00083, 0.00077 and 0.00073 at train-

ing sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values

for both β and γ as the training sets increases.

Figure 4.43 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 10000.
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Table 4.44: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=20000.

Training set Parameters results pweight results pstd results nse

β 0.87819 0.02126 0.00067
γ 1.02369 0.02081 0.00066
µβ 0.8286 0.4033 0.01275

70 µγ 0.42856 0.69764 0.02206
σ 6697.9276 668.5036 21.13994
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.44E-09 1.48E-09 4.68E-11

β 0.88159 0.01987 0.00063
γ 1.02367 0.01945 0.00062
µβ 0.82862 0.40331 0.01275

80 µγ 0.42856 0.69764 0.02206
σ 8448.8386 873.4147 27.6198
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.10E-09 1.13E-09 3.58E-11

β 0.88426 0.01869 0.00059
γ 1.02366 0.01829 0.00058
µβ 0.82863 0.40332 0.01275

90 µγ 0.42856 0.69764 0.02206
σ 11979.0864 1105.77122 34.96756
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 8.71E-10 8.95E-10 2.83E-11
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Figure 4.44: Posterior Mean weights of beta and gamma at N=20000
using SSLHTS Activation function
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Table 4.44 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 20000. The table shows that β has a posterior weight

of 0.8781, 0.8815 and 0.8842 and γ shows 1.02369, 1.02367 and 1.02366 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0212, 0.0198

and 0.0186 and γ has a posterior standard deviation of 0.0281, 0.0194 and 0.0182

at training sets of 70%, 80% and 90% respectively. This implies that both β and

γ produced decreasing posterior standard deviation as the training sets increases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.00067, 0.00063

and 0.00596 and γ also shows NSE values of 0.00066, 0.00062 and 0.00058 at train-

ing sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values

for both β and γ as the training sets increases.

Figure 4.44 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 20000.
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Table 4.45: Summary Table of the Posterior Weight, Standard Devia-
tion and Numerical Standard Error for SSLHTS activation function at
N=50000

Training set Parameters results pweight results pstd results nse

β 0.89825 0.01278 0.0004
γ 1.02359 0.01269 0.0004
µβ 0.82869 0.40337 0.01276

70 µγ 0.42856 0.69764 0.02206
σ 16920.4436 1011.25391 31.97866
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 2.41E-10 2.48E-10 7.83E-12

β 0.89994 0.01193 0.00038
γ 1.02358 0.01184 0.00037
µβ 0.82869 0.40338 0.01276

80 µγ 0.42856 0.69764 0.02206
σ 21609.8463 1321.58287 41.79212
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.84E-10 1.89E-10 5.99E-12

β 0.90129 0.01126 0.00036
γ 1.02358 0.01117 0.00035
µβ 0.8287 0.40338 0.01276

90 µγ 0.42856 0.69764 0.02206
σ 26206.8167 1668.80681 52.7723
σβ 1.52303 0.7498 0.02371
Sγ 0.00481 0.0023 7.27E-05
π 1.46E-10 1.50E-10 4.74E-12
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Figure 4.45: Posterior Mean weights of beta and gamma at N=50000
using SSLHTS Activation function
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Table 4.45 shows the results for the posterior weight, standard deviation and numer-

ical standard error of the bayesian neural network model using SSLHTS activation

function at the sample size of 20000. The table shows that β has a posterior weight

of 0.8982, 0.8999 and 0.9012 and γ shows 1.02359, 1.02358 and 1.02358 at training

sets of 70%, 80% and 90% respectively. The result shows a decreasing posterior

weights for β and γ as the training set increases.

The table also shows that β has a posterior standard deviation of 0.0127, 0.0119

and 0.0112 and γ also has a posterior standard deviation of 0.0126, 0.0118 and

0.0117 at training sets of 70%, 80% and 90% respectively. This implies that both

β and γ produced decreasing posterior standard deviation as the training sets in-

creases.

The result of the Numerical Standard Error(NSE) for both the β and γ are also

displayed in the table. The table shows that β has nse results as 0.0004, 0.00038

and 0.00036 and γ also shows NSE values of 0.0004, 0.00037 and 0.00035 at training

sets of 70%, 80% and 90% respectively. This implies a decreasing NSE values for

both β and γ as the training sets increases.

Figure 4.45 shows the line plot for the posterior weights of β and γ at the varying

values of training sets at the sample size of 50000.
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4.7 ASYMPTOTIC PERFORMANCE FOR ReLU

ACTIVATION FUNCTION AT VARIOUS

SAMPLE SIZES ANDACTIVATION FUNC-

TIONS

The asymptotic performance of the ReLU activation function is displayed in this

section. The results at training set of 70, 80 and 90 percents using the sample

sizes of 50, 100, 200, 500, 1000, 5000, 10000, 20,000 and 50,000 of the Mean Square

Error (MSE), Mean Absolute Error(MAE) and the Training set error of the SSLHT

function are displayed.
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Table 4.46: Asymptotic Performance for ReLU activation function at dif-
ferent training set

Training set Sample size MSE MAE Train.err

50 0.1631 0.2465 0.1522
100 0.2412 0.2534 0.2498
200 0.2508 0.3104 0.26

70 500 0.283 0.3297 0.2818
1000 0.3163 0.4807 0.3153
5000 0.4696 0.6896 0.466
10000 0.5044 0.6634 0.5043
20000 0.5065 0.7452 0.5064
50000 0.5726 0.7188 0.5725

50 0.1195 0.3091 0.1076
100 0.363 0.5439 0.3449
200 0.4463 0.55 0.4515
500 0.5062 0.5541 0.5111

80 1000 0.5323 0.5765 0.5306
5000 0.553 0.5955 0.5524
10000 0.5616 0.6603 0.5713
20000 0.5795 0.7423 0.5793
50000 0.5898 0.716 0.5892

50 0.1468 0.3183 0.1174
100 0.2258 0.5499 0.3032
200 0.2578 0.5519 0.3496
500 0.262 0.5055 0.3568

90 1000 0.3664 0.5473 0.3627
5000 0.5566 0.6006 0.5555
10000 0.5649 0.6543 0.5644
20000 0.5657 0.6701 0.5754
50000 0.5711 0.7173 0.581
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Figure 4.46: Asymptotic Performance for ReLU activation function at
Training set of 70
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Figure 4.47: Asymptotic Performance for ReLU activation function at
Training set of 80

180



Figure 4.48: Asymptotic Performance for ReLU activation function at
Training set of 90
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Table 4.46 shows the asymptotic Performance result for ReLU activation function

at different training set(70, 80, 90) and different sample sizes of 50,100, 200, 500,

1000, 5000, 10000, 20000 and 50000. The performance measured by the mean

square error values(MSE), mean absolute error(MAE) and the training erro shows

an increasing movement for ReLU activation function as the MSE, MAE and train-

ing error values increases as the sample size increases. Also, considering the per-

formance using the training sets, the results shows no consistent pattern as the

training set increases.

Figures 4.46,4.47 and 4.48 shows the asymptotic line plot for the ReLU activation

function for MSE, MAE and training error at 70%, 80% and 90% training sets

respctively.
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4.8 ASYMPTOTIC PERFORMANCE FOR SIG-

MOID ACTIVATION FUNCTION AT VAR-

IOUS SAMPLE SIZES AND ACTIVATION

FUNCTIONS

The asymptotic performance of the Sigmoid activation function is displayed in this

section. The results at training set of 70, 80 and 90 percents using the sample

sizes of 50, 100, 200, 500, 1000, 5000, 10000, 20,000 and 50,000 of the Mean Square

Error (MSE), Mean Absolute Error(MAE) and the Training set error of the SSLHT

function are displayed.
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Table 4.47: Asymptotic Performance for Sigmoid activation function at
different training set

Training set Sample size MSE MAE Train.err

50 0.1834 0.2074 0.1862
100 0.2034 0.2156 0.2091
200 0.2174 0.2417 0.2185
500 0.2685 0.2828 0.283

70 1000 0.3748 0.3483 0.3742
5000 0.429 0.4752 0.4286
10000 0.4937 0.5546 0.4935
20000 0.5585 0.6417 0.5584
50000 0.5701 0.6569 0.5701

50 0.1864 0.2797 0.1883
100 0.203 0.3127 0.2089
200 0.2142 0.3157 0.2165
500 0.2491 0.3922 0.2794

80 1000 0.3661 0.4038 0.3687
5000 0.4073 0.483 0.4168
10000 0.4923 0.5526 0.4921
20000 0.5549 0.6091 0.5557
50000 0.5667 0.6143 0.5666

50 0.1314 0.2631 0.1198
100 0.1407 0.1752 0.1379
200 0.2218 0.3704 0.2196
500 0.342 0.4891 0.3409

90 1000 0.3218 0.3704 0.32196
5000 0.4042 0.4891 0.409
10000 0.4866 0.5474 0.4862
20000 0.5513 0.637 0.5527
50000 0.5689 0.6457 0.5688
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Figure 4.49: Asymptotic Performance for Sigmoid activation function at
Training set of 70
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Figure 4.50: Asymptotic Performance for Sigmoid activation function at
Training set of 80
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Figure 4.51: Asymptotic Performance for Sigmoid activation function at
Training set of 90
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Table 4.47 shows the asymptotic performance result for Sigmoid activation func-

tion at different training set(70, 80, 90) and different sample sizes of 50,100, 200,

500, 1000, 5000, 10000, 20000 and 50000. The performance measured by the mean

square error values(MSE), mean absolute error(MAE) and the training erro shows

an increasing movement for Sigmoid activation function as the MSE, MAE and

training error values increases as the sample size increases. Also, considering the

performance using the training sets, the results shows no consistent pattern as the

training set increases.

Figures 4.49,4.50 and 4.51 shows the asymptotic line plot for the ReLU activation

function for MSE, MAE and training error at 70%, 80% and 90% training sets

respctively.
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4.9 ASYMPTOTIC PERFORMANCE FOR TANGENT-

SIGMOID ACTIVATION FUNCTION AT

VARIOUS SAMPLE SIZES AND ACTIVA-

TION FUNCTIONS

The asymptotic performance of the Tangent-Sigmoid activation function is dis-

played in this section. The results at training set of 70, 80 and 90 percents using

the sample sizes of 50, 100, 200, 500, 1000, 5000, 10000, 20,000 and 50,000 of the

Mean Square Error (MSE), Mean Absolute Error(MAE) and the Training set error

of the SSLHT function are displayed.
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Table 4.48: Asymptotic Performance for Tangent-Sigmoid activation func-
tion at different training set.

Training set Sample size MSE MAE Train.err

50 0.19426 0.269 0.18131
100 0.20105 0.34911 0.20235
200 0.26467 0.30636 0.2636
500 0.33945 0.35073 0.33852

70 1000 0.48079 0.44036 0.47986
5000 0.54091 0.58516 0.54054
10000 0.58131 0.60105 0.58114
20000 0.58206 0.64424 0.58196
50000 0.59193 0.65183 0.59189

50 0.11295 0.19619 0.10166
100 0.25287 0.24029 0.23522
200 0.34993 0.45301 0.3868
500 0.36301 0.3835 0.36138

80 1000 0.49868 0.57088 0.49719
5000 0.54769 0.59166 0.54715
10000 0.5939 0.60824 0.59465
20000 0.5982 0.64148 0.59805
50000 0.59842 0.65156 0.59836

50 0.13562 0.30214 0.1085
100 0.21569 0.35656 0.17412
200 0.25766 0.48208 0.25478
500 0.31729 0.49386 0.31294

90 1000 0.33377 0.51578 0.33043
5000 0.55179 0.69716 0.55069
10000 0.56248 0.65248 0.56198
20000 0.58452 0.67934 0.58423
50000 0.59558 0.68699 0.59444
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Figure 4.52: Asymptotic Performance for Tangent-Sigmoid activation
function at Training set of 70
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Figure 4.53: Asymptotic Performance for Tangent-Sigmoid activation
function at Training set of 80
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Figure 4.54: Asymptotic Performance for Tangent-Sigmoid activation
function at Training set of 90
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Table 4.48 shows the Asymptotic Performance result for Tangent-Sigmoid activa-

tion function at different training set(70, 80, 90) and different sample sizes of 50,100,

200, 500, 1000, 5000, 10000, 20000 and 50000. The performance measured by the

mean square error values(MSE), mean absolute error(MAE) and the training erro

shows an increasing movement for Sigmoid activation function as the MSE, MAE

and training error values increases as the sample size increases. Also, considering

the performance using the training sets, the results shows no consistent pattern as

the training set increases.

Figures 4.52,4.53 and 4.54 shows the asymptotic line plot for the ReLU activation

function for MSE, MAE and training error at 70%, 80% and 90% training sets

respctively.
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4.10 ASYMPTOTIC PERFORMANCE FOR SSLHT

ACTIVATION FUNCTION AT VARIOUS

SAMPLE SIZES ANDACTIVATION FUNC-

TIONS

The asymptotic performance of the SSLHT activation function is displayed in this

section. The results at training set of 70, 80 and 90 percents using the sample

sizes of 50, 100, 200, 500, 1000, 5000, 10000, 20,000 and 50,000 of the Mean Square

Error (MSE), Mean Absolute Error(MAE) and the Training set error of the SSLHT

function are displayed.
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Table 4.49: Asymptotic Performance for SSLHT activation function at
different training set

Training set Sample size MSE MAE Train.err

50 0.07141 0.13081 0.06665
100 0.12602 0.21535 0.12948
200 0.13225 0.19587 0.13005
500 0.16324 0.20593 0.16215

70 1000 0.16418 0.21388 0.16363
5000 0.18982 0.23522 0.1897
10000 0.19195 0.22397 0.19189
20000 0.20289 0.23954 0.20286
50000 0.22149 0.24002 0.22148

50 0.08014 0.10238 0.07213
100 0.10807 0.10885 0.10666
200 0.11957 0.18545 0.11658
500 0.1627 0.21346 0.16108

80 1000 0.16382 0.21575 0.16301
5000 0.19087 0.23647 0.19068
10000 0.20045 0.24253 0.20037
20000 0.20134 0.24845 0.20129
50000 0.21023 0.25905 0.21021

50 0.09505 0.14822 0.07604
100 0.13103 0.15168 0.14027
200 0.14166 0.17162 0.15075
500 0.16377 0.22092 0.16219

90 1000 0.1726 0.22441 0.17087
5000 0.19143 0.23769 0.19105
10000 0.1978 0.24025 0.19763
20000 0.19993 0.24762 0.19983
50000 0.20087 0.25947 0.20083
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Figure 4.55: Asymptotic Performance for SSLHT activation function at
Training set of 70
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Figure 4.56: Asymptotic Performance for SSLHT activation function at
Training set of 80
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Figure 4.57: Asymptotic Performance for SSLHT activation function at
Training set of 90
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Table 4.49 shows the asymptotic performance result for SSLHT activation func-

tion at different training set(70, 80, 90) and different sample sizes of 50,100, 200,

500, 1000, 5000, 10000, 20000 and 50000. The performance measured by the mean

square error values(MSE), mean absolute error(MAE) and the training erro shows

an increasing movement for Sigmoid activation function as the MSE, MAE and

training error values increases as the sample size increases. Also, considering the

performance using the training sets, the results shows no consistent pattern as the

training set increases.

Figures 4.55,4.56 and 4.57 shows the asymptotic line plot for the ReLU activation

function for MSE, MAE and training error at 70%, 80% and 90% training sets

respctively.
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4.11 ASYMPTOTIC PERFORMANCE FOR SSL-

HTS ACTIVATION FUNCTION AT VAR-

IOUS SAMPLE SIZES ANDACTIVATION

FUNCTIONS

The asymptotic performance of the SSLHTS activation function is displayed in

this section. The results at training set of 70, 80 and 90 percents using the sample

sizes of 50, 100, 200, 500, 1000, 5000, 10000, 20,000 and 50,000 of the Mean Square

Error (MSE), Mean Absolute Error(MAE) and the Training set error of the SSLHT

function are displayed.
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Table 4.50: Asymptotic Performance for SSLHTS activation function at
different training set

Training set Sample size MSE MAE Train.err

50 0.03216 0.03395 0.03282
100 0.0331 0.03554 0.03487
200 0.04241 0.04285 0.04187
500 0.04454 0.05105 0.04425

70 1000 0.04715 0.05235 0.04699
5000 0.05701 0.06061 0.05697
10000 0.05764 0.06224 0.05762
20000 0.05898 0.06494 0.05897
50000 0.05951 0.06505 0.05951

50 0.03499 0.0234 0.03149
100 0.03744 0.03844 0.03357
200 0.04875 0.04972 0.03901
500 0.04987 0.0607 0.04443

80 1000 0.0533 0.06317 0.04706
5000 0.05733 0.06399 0.05727
10000 0.0582 0.06681 0.05817
20000 0.06051 0.06691 0.06049
50000 0.06131 0.06776 0.06125

50 0.03977 0.04389 0.03182
100 0.03801 0.04322 0.03321
200 0.04824 0.04612 0.04682
500 0.05005 0.05136 0.04905

90 1000 0.05011 0.05299 0.04961
5000 0.0575 0.06336 0.05739
10000 0.0584 0.06512 0.05835
20000 0.06008 0.06635 0.06005
50000 0.06732 0.07188 0.06731
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Figure 4.58: Asymptotic Performance for SSLHTS activation function at
Training set of 70
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Figure 4.59: Asymptotic Performance for SSLHTS activation function at
Training set of 80
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Figure 4.60: Asymptotic Performance for SSLHTS activation function at
Training set of 90
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Table 4.50 shows the asymtotic performance result for SSLHTS activation func-

tion at different training set(70, 80, 90) and different sample sizes of 50,100, 200,

500, 1000, 5000, 10000, 20000 and 50000. The performance measured by the mean

square error values(MSE), mean absolute error(MAE) and the training erro shows

an increasing movement for Sigmoid activation function as the MSE, MAE and

training error values increases as the sample size increases. Also, considering the

performance using the training sets, the results shows no consistent pattern as the

training set increases.

Figures 4.58,4.59 and 4.60 shows the asymptotic line plot for the SSLHTS activation

function for MSE, MAE and training error at 70%, 80% and 90% training sets

respctively.
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4.12 PERFORMANCE EVALUATION FOR THE

ACTIVATION FUNCTIONS

In this section, the performance of the activation function are examined. The

activation functions are compared in performance using the mean square error,

mean absolute error and the training error. The results are compared at training

sets of 70, 80 and 90 percents using the sample sizes of 50, 100, 200, 500, 1000,

5000, 10000, 20,000 and 50,000 fpr each of the activation functions.
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Table 4.51: Performance evaluation for the activation functions using
Mean Square Error

Training size SAMPLE SIZE RELU SIGMOID TANGENT-SIG SSLHT SSLHTS

70 50 0.1631 0.1834 0.19426 0.07141 0.03216
100 0.2412 0.2034 0.20105 0.12602 0.0331
200 0.2508 0.2174 0.26467 0.13225 0.04241
500 0.283 0.2685 0.33945 0.16324 0.04454
1000 0.3163 0.3748 0.48079 0.16418 0.04715
5000 0.4696 0.429 0.54091 0.18982 0.05701
10000 0.5044 0.4937 0.58131 0.19195 0.05764
20000 0.5065 0.5585 0.58206 0.20289 0.05898
50000 0.5726 0.5701 0.59193 0.22149 0.05951

80 50 0.1195 0.1864 0.11295 0.08014 0.03499
100 0.363 0.203 0.25287 0.10807 0.03744
200 0.4463 0.2142 0.34993 0.11957 0.04875
500 0.5062 0.2491 0.36301 0.1627 0.04987
1000 0.5323 0.3661 0.49868 0.16382 0.0533
5000 0.553 0.4073 0.54769 0.19087 0.05733
10000 0.5616 0.4923 0.5939 0.20045 0.0582
20000 0.5795 0.5549 0.5982 0.20134 0.06051
50000 0.5898 0.5667 0.59842 0.21023 0.06131

90 50 0.1468 0.1314 0.13562 0.09505 0.03977
100 0.2258 0.1407 0.21569 0.13103 0.03801
200 0.2578 0.2218 0.25766 0.14166 0.04824
500 0.262 0.342 0.31729 0.16377 0.05005
1000 0.3664 0.3218 0.33377 0.1726 0.05011
5000 0.5566 0.4042 0.55179 0.19143 0.0575
10000 0.5649 0.4866 0.56248 0.1978 0.0584
20000 0.5657 0.5513 0.58452 0.19993 0.06008
50000 0.5711 0.5689 0.59558 0.20087 0.06732
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Figure 4.61: Performance evaluation for the activation functions using
Mean Square Error
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Table 4.51 shows the performance of the activation functions using the Mean Square

Error(MSE) as the performance measure. They are compared at different sample

sizes and at different training sets. The results shows that at the training set of 70,

the ReLU activation function is considered best among the HOMAFs, while SSL-

HTS is better among the HETAFs and they produced minimum MSE values. But

in all at training set of 70, HETAFs activation functions performed better compared

to the HOMAFs activation functions with minimum MSE values. At training set

of 80, ReLU activation function still perform best among HOMAFs while SSLHTS

still perform better among the HETAFs. At training set of 90, Sigmoid activation

function perform best among the HOMAFs as it produced minimum MSE values.

But in summary, the HETAFs activation functions has minimum MSE values com-

pared to HOMAFs and this make them better in performance.

Figure 4.61 above shows the performance evaluation plot for the activation func-

tions using the Mean Square Error values. It shows that SSLHTS activation func-

tion produced lowest Mean Square Error values at all the considered sample sizes

and at all the training sets considered, followed by SSLHT activation function.

Other activation functions i.e ReLU, Sigmoid and Tangent Sigmoid produced higher

Mean Square Error values compared to the first two mentioned.
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Table 4.52: Performance evaluation for the activation functions using
Mean Absolute Error

Training size SAMPLE SIZE ReLU SIGMOID TANGENT-SIG SSLHT SSLHTS

70 50 0.2465 0.2074 0.269 0.13081 0.03395
100 0.2534 0.2156 0.34911 0.21535 0.03554
200 0.3104 0.2417 0.30636 0.19587 0.04285
500 0.3297 0.2828 0.35073 0.20593 0.05105
1000 0.4807 0.3483 0.44036 0.21388 0.05235
5000 0.6896 0.4752 0.58516 0.23522 0.06061
10000 0.6634 0.5546 0.60105 0.22397 0.06224
20000 0.7452 0.6417 0.64424 0.23954 0.06494
50000 0.7188 0.6569 0.65183 0.24002 0.06505

80 50 0.3091 0.2797 0.19619 0.10238 0.0234
100 0.5439 0.3127 0.24029 0.10885 0.03844
200 0.55 0.3157 0.45301 0.18545 0.04972
500 0.5541 0.3922 0.3835 0.21346 0.0607
1000 0.5765 0.4038 0.57088 0.21575 0.06317
5000 0.5955 0.483 0.59166 0.23647 0.06399
10000 0.6603 0.5526 0.60824 0.24253 0.06681
20000 0.7423 0.6091 0.64148 0.24845 0.06691
50000 0.716 0.6143 0.65156 0.25905 0.06776

90 50 0.3183 0.2631 0.30214 0.14822 0.04389
100 0.5499 0.1752 0.35656 0.15168 0.04322
200 0.5519 0.3704 0.48208 0.17162 0.04612
500 0.5055 0.4891 0.49386 0.22092 0.05136
1000 0.5473 0.3704 0.51578 0.22441 0.05299
5000 0.6006 0.4891 0.69716 0.23769 0.06336
10000 0.6543 0.5474 0.65248 0.24025 0.06512
20000 0.6701 0.637 0.67934 0.24762 0.06635
50000 0.7173 0.6457 0.68699 0.25947 0.07188
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Figure 4.62: Performance evaluation for the activation functions using
Mean Absolute Error
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Table 4.52 shows the performance of the activation functions using the Mean Ab-

solute Error(MAE) as the performance measure. They are compared at different

sample sizes and at different training sets. The results shows that at the training

set of 70, the Sigmoid activation function is considered best among the HOMAFs,

while SSLHTS is better among the HETAFs and they produced minimum MAE

values. But in all at training set of 70, HETAFs activation functions performed

better compared to the HOMAFs activation functions with minimum MSE values.

At training set of 80, Tangent-Sigmoid activation function still perform best among

HOMAFs while SSLHTS perform better among the HETAFs. At training set of

90, Sigmoid activation function perform best among the HOMAFs as it produced

minimum MAE values. But in summary, the HETAFs activation functions has

minimum MAE values compared to HOMAFs and this make them better in per-

formance.

Figure 4.62 above shows the performance evaluation plot for the activation func-

tions using the Mean Absolute Error values. It shows that SSLHTS activation

function produced lowest Mean Absolute Error values at all the considered sample

sizes and at all the training sets considered, followed by SSLHT activation func-

tion. Other activation functions i.e ReLU, Sigmoid and Tangent Sigmoid produced

higher Mean Square Error values compared to the first two mentioned.
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Table 4.53: Performance evaluation for the activation functions using
Training Error

Training size SAMPLE SIZE ReLU SIGMOID TANGENT-SIG SSLHT SSLHTS

70 50 0.1522 0.1862 0.18131 0.06665 0.03282
100 0.2498 0.2091 0.20235 0.12948 0.03487
200 0.26 0.2185 0.2636 0.13005 0.04187
500 0.2818 0.283 0.33852 0.16215 0.04425
1000 0.3153 0.3742 0.47986 0.16363 0.04699
5000 0.466 0.4286 0.54054 0.1897 0.05697
10000 0.5043 0.4935 0.58114 0.19189 0.05762
20000 0.5064 0.5584 0.58196 0.20286 0.05897
50000 0.5725 0.5701 0.59189 0.22148 0.05951

80 50 0.1076 0.1883 0.10166 0.07213 0.03149
100 0.3449 0.2089 0.23522 0.10666 0.03357
200 0.4515 0.2165 0.3868 0.11658 0.03901
500 0.5111 0.2794 0.36138 0.16108 0.04443
1000 0.5306 0.3687 0.49719 0.16301 0.04706
5000 0.5524 0.4168 0.54715 0.19068 0.05727
10000 0.5713 0.4921 0.59465 0.20037 0.05817
20000 0.5793 0.5557 0.59805 0.20129 0.06049
50000 0.5892 0.5666 0.59836 0.21021 0.06125

90 50 0.1174 0.1198 0.1085 0.07604 0.03182
100 0.3032 0.1379 0.17412 0.14027 0.03321
200 0.3496 0.2196 0.25478 0.15075 0.04682
500 0.3568 0.3409 0.31294 0.16219 0.04905
1000 0.3627 0.32196 0.33043 0.17087 0.04961
5000 0.5555 0.409 0.55069 0.19105 0.05739
10000 0.5644 0.4862 0.56198 0.19763 0.05835
20000 0.5754 0.5527 0.58423 0.19983 0.06005
50000 0.581 0.5688 0.59444 0.20083 0.06731
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Figure 4.63: Performance evaluation for the activation functions using
Training Error
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Table 4.53 shows the performance of the activation functions using the training

error as the performance measure. They are compared at different sample sizes

and at different training sets. The results shows that at the training set of 70, the

ReLU activation function is considered best among the HOMAFs, while SSLHTS

is better among the HETAFs and they produced minimum training error values.

But in all at training set of 70, HETAFs activation functions performed better

compared to the HOMAFs activation functions with minimum training error val-

ues. At training set of 80, Sigmoid activation function still perform best among

HOMAFs while SSLHTS perform better among the HETAFs. At training set of

90, Sigmoid activation function perform best among the HOMAFs as it produced

minimum MAE values. But in summary, the HETAFs activation functions has

minimum MAE values compared to HOMAFs and this implies better in perfor-

mance.

Figure 4.63 above shows the performance evaluation plot for the activation func-

tions using the training error values. It shows that SSLHTS activation function

produced lowest training error values at all the considered sample sizes and at all

the training sets considered, followed by SSLHT activation function. Other acti-

vation functions i.e ReLU, Sigmoid and Tangent Sigmoid produced higher training

error values compared to the first two mentioned.
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4.13 RESULT OF ANALYSIS FOR THE TER-

RORISM DATA

In this section, the results for each activation function considered and their perfor-

mance measures are displayed. Table 4.54 shows information about the data used

and Table 4.55 and Table 4.56 show the model performance for the activation func-

tions used. For this study, 508 responses were received and Table 4.54 shows the

frequency in cross tabulation between the regions and the suicide attack response.

Figures 4.64 shows composite bar chart for the attack type by zones in Nigeria,

while Figure 4.65 shows the bar chart for the weapon type by zones in Nigeria.
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Table 4.54: Cross tabulation table between Region and Suicide Attack
response

Region suicide attack
Zone No Yes Total Percent

North Central 7 5 12 2.4%
North East 40 32 72 14.2%
North West 75 87 162 31.9%
South east 32 44 76 15.0%
South South 6 4 10 2.0%
South West 86 90 176 34.6%
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Figure 4.64: Attack type by Zones in Nigeria
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Figure 4.65: Weapon type by zones in Nigeria
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Table 4.55: Model Performance for the Suicide Attack
Model Accuracy Precision Recall F1-Score

RELU 0.878 0.861 0.878 0.896
Sigmoid 0.854 0.876 0.854 0.865
Tangent-sigmoid 0.902 0.913 0.902 0.907
SSHLT 0.913 0.926 0.917 0.921
SSHLTS 0.982 0.975 0.988 0.981
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Table 4.55 above shows the performance measures for the five activation func-

tions for the Suicide Attack. The RELU, Sigmoid, Tangent-Sigmoid, SSHLT and

SSHLTS activation functions produced 87.8%, 85.4%, 90.2%, 91.3% and 98.2% ac-

curacy respectively. For precision, RELU, Sigmoid, Tangent-Sigmoid, SSHLT and

SSHLTS activation functions produced, 86.1%, 87.6%, 90.2%, 92.6% and 97.5%

respectively. For Recall performance, the models produced, 87.8%, 85.4%, 91.3%,

91.7%, and 98.8% respectively. Their F1-score results show 89.6%, 86.5%, 90.7%,

92.1%, and 98.1% respectively.
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Table 4.56: Relative Importance for the Suicide Attack

Features Relative Importance

Number of Perpetrators 62.320
Attack Type 17.852
Weapon Type 11.613
Target/Victim Type 8.215
State of the incident 0.000
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Table 4.56 shows that, the Number of Perpetrators takes 62.320% determination

on whether the terrorist attack will be suicidal or not. Attack Type takes 17.852%,

Weapon Type determines 11.613%, Target/Victim Type determines 8.215% and

State of the incident determines zero percentage.
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Table 4.57: Model Performance for the Attack Type

Activation functions Accuracy Precision Recall F1-score
RELU 0.902 0.913 0.902 0.886
Sigmoid 0.854 0.876 0.854 0.805
Tangent sigmoid 0.913 0.926 0.917 0.951
SSHLT 0.975 0.975 0.975 0.974
SSHLTS 0.976 0.976 0.976 0.975
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Table 4.57 shows the performance measures for the five activation functions con-

sidered. The RELU, Sigmoid, Tangent-Sigmoid, SSHLT and SSHLTS activation

functions produced 90.2%, 85.4%, 91.3%, 97.5% and 97.6% accuracy respectively.

For precision, RELU, Sigmoid, Tangent-Sigmoid, SSHLT and SSHLTS activation

functions produced 91.3%, 87.6%, 92.6%, 97.5% and 97.6% respectively. For Re-

call performance, the models produced, 90.2%, 85.4%, 91.7%, 97.5%, and 97.6%

respectively. Their F1-score results show 88.6%, 80.5%, 95.1%, 97.4%, and 97.5%

respectively.
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Table 4.58: Relative Importance for Attack Type

Features Relative Importance

Number of Perpetrators 68.271
Weapon Type 16.964
Target/Victim Type 10.469
State of the incident 4.3
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Table 4.58 shows the relative importance table for the attack type. The table

shows that, the Number of Perpetrators takes 68.271% in determining the type

of the Attack the terrorist are to carry out. Weapon Type determines 16.964%,

Target/Victim Type determines 10.469% and State of the incident determines 4.3

percent.
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4.14 DISCUSSION OF RESULTS

This section discusses the findings from the analysis carried out in this study.

The aim of this study is to reduce overfitting in Neural network modelling using

Bayesian approach with heterogeneous activation function. This is truely achieved

in this study by looking closely to the results obtained from the mean square error

and the train error. The closer these values, the lower the problem of overfitting.

Looking at the reults obtained, the performance evaluation for the activation func-

tions using the mean square error and Training Error deduced a close value between

them.

Three homogeneous transfer functions and two heterogeneous transfer functions

were taken into consideration in this study at varied training set percentages of

70%, 80%, and 90%. ReLU produced the majority of the lowest mean square errors

(MSE), mean absolute errors (MAE), and training errors among homogeneous ac-

tivation functions. In contrast, the two heterogeneous transfer functions produced

the lowest mean square errors, mean absolute errors, and training errors when com-

pared to the homogeneous transfer functions considered, which makes them more

accurate predictors. The findings also demonstrate that the mean square error

value reduces with increasing sample size.

Mean Square Error (MSE) was utilized in this study to evaluate each ANN model’s

performance. Finally, across all sample sizes, ReLU delivered the majority of the

lowest mean square errors (MSEs). Additionally, the mean square error typically

increases as the training proportion does too. In terms of prediction metrics, the

performance of the investigated heterogeneous transfer functions was good because

they almost always produced the lowest mean square error for training sets and

at various levels of sample sizes. This result supports the work by Ogundunmade

and Adepoju (2021) on the classical performance of artificial neural network model

with heterogeneous transfer functions.

Diverse studies on the application of homogeneous and heterogeneous activation

functions in neural network models have been published in the literature. The

traditional approach was used by Udomboso, C. G. (2013) to compare the ho-
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mogeneous and heterogeneous activation functions. In order to address the issue

of over-fitting, we created a Bayesian framework for the neural network model

in this study. Both the homogeneous and the heterogeneous activation functions

were taken into account in this work. Therefore, this research found that a neural

network model with a Bayesian framework and heterogeneous activation functions

reduced over-fitting.

The results discussion revealed that all of the study’s aim and objectives had

been achieved, which revealed gaps in the research and filled gaps in the body of

existing knowledge.
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Chapter 5

SUMMARY, CONCLUSION AND

RECOMMENDATION

5.1 SUMMARY

In this thesis, Bayesian Neural Network (BNN) with heterogenous activation func-

tion has been established to perform better in prediction compare to the the use

of homogeneous activation function. The summary of the work is described below.

The Posterior mean, standard deviation and NSE for ReLU, Sigmoid, Tangent-

Sigmoid, SSLHT and SSLHTS activation functions at different sample sizes and

training sets showed that the parameter estimate values for β and γ increase tends

closed to the assume values as the sample size increase. The standard deviation

values decrease as the sample size increase for both β and γ.

The Asymtotic Performance for the activation functions using the mse, mae and

train error values and at different sample sizes and training sets showed that MSE,

MAE and train error values increase as the sample size increases at considered

level of training sets. The close values between the MSE and train error also shows

reduction in overfitting as stated in the aim of the study. But the SSLHTS showed

better closer values between the MSE and train error.

The performance evaluation for the activation functions using the mse, mae and

train error values was also examined. It shows that SSLHTS activation function

produced lowest MSE, MAE and train error values at all the considered sam-

ple sizes and at all the training sets considered, followed by SSLHT activation

function. Other activation functions i.e ReLU, Sigmoid and Tangent Sigmoid pro-

duced higher train error values compared to the first two mentioned. Among the
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HOMAFs, ReLU activation function is considered to have performed better com-

pare to Sigmoid and Tangent-Sigmoid activation functions.

5.2 CONCLUSION

In this study, it can be deduced that:

The weights of the BNN at different samples sizes and training sets for both ho-

mogeneous and heterogeneous activation functions were obtained.

The performance of heterogeneous activation functions (SSHLT and SSHLTS) com-

pared to the homogeneous activation functions were better.

The asymptotic performance in terms of mse, mae and train error of the functions

show that as the sample size increases, these mentioned performance estimators

also increases.

For the real life data, the accuracy and F1-score of the BNN model using the het-

erogeneous activation function is higher than that of the homogeneous activation

functions and this implies better classification performance.

5.3 LIMITATIONS OF THE STUDY

The first limitation encountered in this study was the compuational rigour around

estimation of this model. It took highly intensive computer hardware to be able

to obtain the results in this study. Also, another limitation of this study is the

problem encountered obtaining real life data used to be used. Primary data was

finally resulted into for this study.

5.4 RECOMMENDATIONS

This study therefore recommends the use of Bayesian Neural Network modelling

with heterogeneous activation function in various machine learning and data science

areas, especially in deep learning. It can be applied in different areas of machine

learning and artificial intelligence as models in other to reduce overfitting especially

in Neural Network models. Overcoming amelioration in neural network modelling
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can be reduced using the heterogeneous activation functions. Also, we recommend

the model in areas like security detection, image and language detection.

5.5 CONTRIBUTIONS TO KNOWLEDGE

This research work have identified gaps and addressed the methodology of Bayesian

Neural Network using heterogenous activation functions. Also the Bayesian Neural

Network (BNN) model has been shown analytically and empirically, to be more

efficient in terms of reducing overfitting in Bayesian Neural Network modelling.

It is also seen in this study that when Bayesian neural network model performs

better using heterogenous activation functions than using homogeneous activation

using Bayesian approach of estimation . The asymptotic behavior of the activation

functions also showed that as the samples increases, the mean square error, mean

absolute error and the training error increase.

One of the so-called important models used in data science for pattern and image

recognition, computer vision, and other applications is the neural network model.

Since the neural network is the fundamental functional component of the model, it

cannot be used without the usage of activation functions. Most of these locations

indicated above have been predicted in earlier studies using homogeneous trans-

fer functions. It is advised that neural network models for heterogeneous transfer

functions be taken into consideration in light of the study’s findings. The forecast

performance of the heterogeneous transfer functions in this study has demonstrated

that improved outcomes will be reached when applied in neural network models

for the aforementioned fields of research and many more.

5.6 SUGGESTIONS FOR FURTHER RESEARCH

For future research, one might find it important to

1. Consider other newly developed areas of neural network models like Deep Neural

Network(DNN) and Convolutionary Neural Network (CNN).

2. Make use of heterogeneous activation functions in these new areas of Neural

Networks

3. explore further into other activation functions that may give better optimal
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performances.

4. Determine analytically the number of hidden neurons needed to obtain an opti-

mal performance.
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